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2 KOPPETSCH, MALINSKY, AND MATSCHINER

Abstract

The role of interspecific hybridization has recently seen increasing attention, especially in

the context of diversification dynamics. Genomic research has now made it abundantly

clear that both hybridization and introgression – the exchange of genetic material through

hybridization and backcrossing – are far more common than previously thought. Besides

cases of ongoing or recent genetic exchange between taxa, an increasing number of studies

report “ancient introgression” – referring to results of hybridization that took place in the

distant past. However, it is not clear whether commonly used methods for the detection of

introgression are applicable to such old systems, given that most of these methods were

originally developed for analyses at the level of populations and recently diverged species,

affected by recent or ongoing genetic exchange. In particular, the assumption of constant

evolutionary rates, which is implicit in many commonly used approaches, is more likely to

be violated as evolutionary divergence increases. To test the limitations of introgression

detection methods when being applied to old systems, we simulated thousands of genomic

datasets under a wide range of settings, with varying degrees of among-species rate

variation and introgression. Using these simulated datasets, we showed that some

commonly applied statistical methods, including the D-statistic and certain tests based on

sets of local phylogenetic trees, can produce false-positive signals of introgression between

divergent taxa that have different rates of evolution. These misleading signals are caused

by the presence of homoplasies occurring at different rates in different lineages. To

distinguish between the patterns caused by rate variation and genuine introgression, we

developed a new test that is based on the expected clustering of introgressed sites along

the genome, and implemented this test in the program Dsuite.

Key words : hybridization; introgression; rate variation; D-statistic; tree topology variation;

branch lengths; phylogenetic network; phylogenomics.
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RELIABLE DETECTION OF INTROGRESSION 3

Recent research has demonstrated that hybridization – the production of viable

offspring between distinct species – is far more common than previously thought (Mallet,

2005; Taylor and Larson, 2019). Hybridization seems to be particularly frequent in rapidly

diversifying clades (Meier et al., 2017; Patton et al., 2020; Mitchell and Whitney, 2021)

and has also been linked to the emergence of new species through so-called hybrid

speciation (Rieseberg et al., 1995; Lamichhaney et al., 2018; Runemark et al., 2018).

Hybridization therefore appears to promote diversification in certain situations (Seehausen,

2004; Abbott et al., 2013), contrary to the traditional view in which hybridization is seen

as inhibiting speciation (Mayr, 1942).

Recent studies have also revealed that even highly divergent species are sometimes

still able to hybridize and backcross. Apart from records of interspecific hybrids within a

genus, such as crosses between fin whale Balaenoptera physalus and blue whale B.

musculus (Pampoulie et al., 2021) (with both species having diverged about 8.35 million

years ago (Ma) (Árnason et al., 2018)), intergeneric hybrids are also known, for example

between colubrid snakes of the genera Pituophis and Pantherophis (LeClere et al., 2012),

given a divergence between both genera of about 15.5 Ma (Pyron and Burbrink, 2009).

Various other hybridization events between deeply divergent lineages have been reported,

as for example among coral reef fishes (Pomacanthidae) with over 10% mitochondrial

divergence (Tea et al., 2020), even though the most extreme examples of hybridization

between divergent lineages are known from captive specimens only (e.g., interfamilial

hybrids between sturgeons, Acipenseridae, and paddlefishes, Polyodontidae; two groups

that diverged as early as 140-180 Ma; Káldy et al. 2020; Betancur-R et al. 2017; Rabosky

et al. 2018). While the examples listed above refer to recent hybridization events, often

detected through the observation of F1-hybrids, the fact that hybridization is recorded

among divergent groups today suggests that it has also taken place in the distant past,

when they were still more closely related.
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4 KOPPETSCH, MALINSKY, AND MATSCHINER

Introgression, the transfer of genetic material between species via hybridization and

backcrossing (Martin and Jiggins, 2017), can leave detectable traces in the genomes of

extant taxa. Such traces are being reported from an increasing number of taxa, including

highly divergent ones, and have been interpreted as evidence for “ancient introgression”.

Such ancient introgression has for example been reported to have occurred between the

Komodo dragon Varanus komodoensis and Australian monitor lizards (Varanidae) in the

Late Miocene (11.6–5.3 Ma) (Pavón-Vázquez et al., 2021), among North American darters

(Percidae, e.g., the genus Allohistium) at least 20 Ma (MacGuigan and Near, 2019), or

among sea turtles (Cheloniidae) (Vilaça et al., 2021) up to 46 Ma. In fungus gnats,

germline-restricted genes were suggested to have introgressed between the ancestors of

Sciaridae and Cecidomyiidae even as early as 114 Ma (Hodson et al., 2022). In plants,

ancient introgression has been reported for several groups of angiosperms (Stull et al.,

2023). For example, birch tree species within Coryloideae (Betulaceae) were reported to

have exchanged genes between 17 and 33 Ma (Wang et al., 2022; Stull et al., 2023) and

ancient hybridization has been reported during the early diversification of asterids over 100

Ma, between the order Ericales and the ancestor of Cornales or Gentianidae (Stull et al.,

2020, 2023).

These reports raise the question whether methods for the detection of introgression

from genomic data are still applicable to such old groups (Hibbins and Hahn, 2022), given

that key methods were originally developed for analyses at the level of populations and

recently diverged species. One of the most commonly used approaches for introgression

detection is the D-statistic, which was first applied to assess genetic exchange occurring

about 50,000 years ago between Neanderthals and the ancestors of modern humans (Green

et al., 2010; Sankararaman et al., 2012). The D-statistic detects introgression through the

so-called ‘ABBA-BABA test’ (Green et al., 2010; Durand et al., 2011), based on an

imbalance in the sharing of ancestral (‘A’) and derived (‘B’) alleles across the genomes of

four populations or species. This test assumes that, in the absence of introgression but
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RELIABLE DETECTION OF INTROGRESSION 5

presence of incomplete lineage sorting (ILS), two sister species share an equal proportion of

derived ‘B’ alleles with any third species. A statistically significant excess of allele sharing

in either direction (an excess of ‘ABBA’ or ‘BABA’ sites) is then considered indicative of

genetic exchange between non-sister taxa. Although misleading signals can under certain

scenarios be created by population structure in ancestral species (Durand et al., 2011;

Eriksson and Manica, 2012), the D-statistic is considered to be robust under a wide range

of evolutionary scenarios when applied to genome-wide data (Zheng and Janke, 2018).

However, the violation of two assumptions that are implicit in the use of the

D-statistic can lead to false positive results: First, each variable site is assumed to result

from a single substitution, and thus homoplasies – caused by independent substitutions at

the same site in different species – are assumed to be absent. Randomly occurring

homoplasies would not produce a false signal of introgression, because they are equally

likely to increase the numbers of ‘ABBA’ and ‘BABA’ sites. Thus, a substitution that

occurs in an outgroup to two sister species is equally likely to also occur in one or the

other of the two sisters. But when a second assumption – that of uniform substitution

rates across all species – is violated, homoplasies are more likely to occur in the sister

species with the higher rate. This could lead to significantly unequal numbers of ‘ABBA’

and ‘BABA’ sites and a D-statistic falsely supporting introgression (Pease and Hahn,

2015; Amos, 2020; Frankel and Ané, 2023).

Both violations, homoplasies and substitution-rate variation, are more likely to

occur in older groups of species. Homoplasies require that sites are substituted on two

different branches of a phylogenetic tree, which occurs more often when these branches are

longer. Substitution-rate variation, on the other hand, is influenced by factors such as

metabolic rate, generation time, longevity, or temperature, that are all expected to be

similar among closely related species but may vary with increasing phylogenetic distance

(Wilson Sayres et al., 2011; Bromham, 2020; Hua and Bromham, 2017; Ivan et al., 2022;

Hua et al., 2015). A misleading effect of substitution-rate variation on the D-statistic,
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6 KOPPETSCH, MALINSKY, AND MATSCHINER

generating false-positive signals of introgression, has been suspected repeatedly (Pease and

Hahn, 2015; Zheng and Janke, 2018; Hibbins and Hahn, 2022) and was recently supported

by simulations under the birth-death-hybridization process (Justison et al., 2023; Frankel

and Ané, 2023).

To avoid the effects of rate variation on introgression detection, a tree-based

equivalent of the D-statistic has been used in several studies (Vanderpool et al., 2020;

Ronco et al., 2021). In this approach, rooted phylogenetic trees are first built for a large

number of loci (regions with hundreds to thousands of base pairs) across the genome, and

the inferred set of trees is then analyzed for topological asymmetry in three-species subsets

just like site patterns are in the D-statistic. Thus, the most frequent tree topology for a set

of three species is assumed to represent their species tree, and the frequencies of the

second- and third-most frequent topologies are compared to each other. A significant

difference in these frequencies is then interpreted as evidence of introgression. The test

statistic has been named Dtree in Ronco et al. (2021) (who were unaware that a

non-normalized version of this statistic had already been called ∆ by Huson et al. 2005).

Frequencies of tree topologies have also been used to infer introgression in other studies

(Schumer et al., 2016; Gante et al., 2016; Figueiró et al., 2017; Martin and Van Belleghem,

2017; Suvorov et al., 2022). One might expect that, as a tree-based alternative to the

D-statistic, Dtree would be more robust to homoplasies, given that the occurrence of one or

few homoplasies per locus should not have an effect on the tree topology (Hibbins and

Hahn, 2022; Frankel and Ané, 2023). On the other hand, homoplasies in combination with

rate variation can lead to long-branch attraction (Felsenstein, 1978), which might bias

tree-topology frequencies even if their effect on each individual tree is weak.

Here, we use simulations to test the robustness of introgression detection methods

to the combined effects of homoplasies and rate variation, as expected to occur in older

groups of species. We simulate genomic datasets under a wide range of settings, including

varying population sizes, divergence times, recombination rates, mutation rates,
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RELIABLE DETECTION OF INTROGRESSION 7

introgression rates, and degrees of among-species rate variation. Besides the D-statistic

and its tree-based equivalent Dtree, we apply three further tree-based methods to detect

introgression in complementary ways: the phylogenetic network approach implemented in

SNaQ (Soĺıs-Lemus et al., 2017), the approach based on branch-length distributions

implemented in QuIBL (Edelman et al., 2019), and a method based on divergence-time

distributions in time-calibrated phylogenies. The latter method was presented by Meyer,

Matschiner, and Salzburger (2017), and will henceforth be called “MMS17 method”. We

hypothesized that all of these methods could produce false signals of introgression when

among-species rate variation is present, and that these signals would become stronger with

increasing age of the introgression event, mutation rates, and degree of rate variation. Our

results confirm that the D-statistic, as well as some of the tested tree-based methods are

affected by rate variation. To distinguish between true signals of introgression and the false

signals resulting from rate variation, we developed a new test based on the distribution of

‘ABBA’ sites on the genome, and we implemented this test into the introgression analysis

software Dsuite (Malinsky et al., 2021). We assess the performance of this new test with

simulated and empirical datasets, and confirm its suitability across a broad range of

parameters.

Materials and Methods

Simulations

To test the performance of commonly applied introgression detection methods, genomic

data were simulated under diverse scenarios. All simulations were conducted in the Python

version 3.8.6 environment using the program msprime v.1.0 (Baumdicker et al., 2021). A

four-taxon phylogeny was defined for the species P1, P2, P3, and P4, in which P1 and P2

were sister species and P4 was the outgroup to all others. The divergence of species P1 and

P2, tP1,P2, was set to occur either 10, 20, or 30 million generations ago, with species P3

and P4 in each case set to branch off 10 and 20 million generations earlier, respectively.
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8 KOPPETSCH, MALINSKY, AND MATSCHINER

Thus, the most recent common ancestor of the four species dated to between 30 and 50

million generations ago (Fig. 1), and the internode distances were in all cases identical,

which implied that the expected degree of ILS remained identical. All simulated species

had identical and constant effective population sizes (Ne), set to either Ne = 104 or

Ne = 105 in separate simulations. An effective population size of Ne = 106 was used in

exploratory simulations, but as these simulations were too computationally demanding and

their results did not seem to differ from those based on smaller population sizes, final

simulations were based on the two smaller population sizes. We conducted one set of

simulations that did not include any genetic exchange between species while other

simulations included introgression between species P2 and P3. In these cases, P2 and P3

exchanged migrants with a rate m of either m = 10−9 (“very weak”), m = 10−8 (“weak”),

m = 10−7 (“strong”), or m = 10−6 (“very strong”) per individual per generation, which is

equivalent to the exchange of one migrant on average every 102 − 105 generations when

Ne = 104 or every 10 − 104 generations when Ne = 105. In all simulations, migration

between P2 and P3 occurred for the same period of time, beginning with the divergence of

P1 and P2 and ending 2.5 million generations later (Fig. 1).

Fig. 1. Four-taxon phylogenies used in simulations. Divergence times of species P1 and P2 (tP1,P2) are 10, 20, and
30 million generations in the past, with P3 and P4 branching off 10 and 20 million generations earlier, respectively.
Species P2 evolved with a mutation rate that was either unchanged (scale factor s = 1; a,b) or slower (s = 0.25;
illustrated in blue in c,d) than the mutation rate of all other species (besides s = 0.25, both a less extremely
reduced rate and faster rates of species P2 were simulated with s = 0.5, s = 2, and s = 4, but are not shown here).
In simulations that included introgression (b,d), this introgression occurred symmetrically between P2 and P3,
beginning with the divergence of P1 and P2, and continuing for 2.5 million generations (illustrated in red in b,d).
Any reliable method for introgression detection should identify a signal for b and d but not for a and c.

Based on this model of divergence and introgression, we simulated the evolution of

the genomes of the four species, modeling these as a single chromosome with a length of 20

million basepairs (Mbp). The recombination rate r of this chromosome was set to r = 10−8

and the mutation rate µ was set to either µ = 10−9 or µ = 2 × 10−9 in separate simulations

(both rates are given per site per generation). Mutations were simulated under the

Hasegawa-Kishino-Yano (HKY) model (Hasegawa et al., 1985) with a
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RELIABLE DETECTION OF INTROGRESSION 9

transition-transversion rate ratio κ = 2. Finally, we implemented among-species variation

in the mutation rate to model a decreased, unchanged, or increased rate in species P2,

with the rate change taking place immediately after its divergence from P1. Because

msprime does not allow mutation-rate variation among species, we used a work-around

with the same outcome, extending or shortening the branch leading to P2 with a scale

factor s. We repeated the simulations using each of the five scale factors s = 0.25 (“very

slow P2”), s = 0.5 (“slow P2”), s = 1 (“unchanged P2”), s = 2 (“fast P2”), and s = 4

(“very fast P2”) to model varying degrees of among-species rate variation. For each of the

four simulated species, we sampled ten haploid chromosomes to form diploid genomes for

five individuals per species. To implement the above-mentioned work-around for s = 0.25

and s = 0.5, we sampled individuals from species P2 at a time point in the past so that the

length of its branch was effectively divided by 2 or 4. For s = 1, all samples were taken at

the present. With scale factors s = 2 and s = 4, P2 was sampled at the present, but all

divergences were shifted into the past by the amount of generations by which the P2

branch was extended, and P1, P3, and P4 were instead sampled in the past. In summary,

we performed simulations with all possible combination of

tP1,P2 ∈ {1 × 107, 2 × 107, 3 × 107}, Ne ∈ {104, 105}, m ∈ {0, 10−9, 10−8, 10−7, 10−6},

r = 10−8, µ ∈ {1 × 10−9, 2 × 10−9}, and s ∈ {0.25, 0.5, 1, 2, 4}; a total of 300 parameter

combinations. For the central parameter settings – population size Ne = 105, mutation rate

µ = 2× 10−9, introgression rate m ∈ {0, 10−8, 10−7}, and a P2 branch rate s ∈ {0.25, 1, 4} –

50 replicates (shown in Fig. 2–4) were simulated; for all the other parameter combinations,

we performed ten replicate simulations (shown in Supplementary Figs. S1–S24), recording

the resulting total genomic datasets in 4,080 files in the variant call format (VCF).

Fig. 2. Patterson’s D-statistic for datasets simulated with a population size Ne = 105, a mutation rate
µ = 2× 10−9, either no (m = 0; a,d), weak (m = 10−8; b,e), or strong (m = 10−7; c,f) introgression, and either an
unchanged (s = 1; a–c) or slow (s = 0.25; d–f) rate of branch P2. All results obtained with other settings are given
in Supplementary Table S1 and illustrated in Supplementary Figures S1–S4. Per divergence time
tP1,P2 ∈ {1× 107, 2× 107, 3× 107}, the D-statistic is shown for 50 replicate simulations. Circles in black indicate
significant results (p < 0.05), and only these are summarized with box plots.
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10 KOPPETSCH, MALINSKY, AND MATSCHINER

Fig. 3. Signals of introgression detected with tree-based methods for datasets simulated with a population size
Ne = 105, a mutation rate µ = 2× 10−9, either no (m = 0), weak (m = 10−8), or strong (m = 10−7) introgression,
either an unchanged (s = 1) or very slow (s = 0.25) rate of branch P2, and an alignment length of 500 bp. All
results obtained with other settings are shown in Supplementary Figures S5–S16. Per divergence time
tP1,P2 ∈ {1× 107, 2× 107, 3× 107}, results are shown for 50 replicate simulations. Each result is based on 2,000
local trees. a–f) Dtree; g–l) dAIC supporting introgression in networks produced with SNaQ; m–r) introgression
proportion estimated with QuIBL; s–x) dMRCA estimated with the MMS17 method, in units of million
generations. In a–r, circles in black indicate significant results (p < 0.05; before Bonferroni correction), and only
these are summarized with box plots. As significance is not assessed with the MMS17 method, all values are shown
in black in s–x.

Fig. 4. Signals of introgression detected with the “sensitive” version of the new ‘ABBA’-site clustering test for 50
replicate datasets simulated with a population size Ne = 105, a mutation rate µ = 2× 10−9, either no (m = 0; a,d),
weak (m = 10−8 ; b,e), or strong (m = 10−7; c,f) introgression, and either an unchanged (s = 1; a–c), or slow
(s = 0.25; d–f) rate of branch P2. All results obtained with other settings are shown in Supplementary Figures
S17–S21. Circles in black indicate significant results (p < 0.05), and only these are summarized with box plots.
Significant results in a and d became non-significant after Bonferroni correction.

The range of parameters used in our simulations was selected to be comparable

with some of the study systems for which ancient introgression has been reported. In terms

of divergence time and mutation rate, our simulations are comparable to the example of

North American darters (MacGuigan and Near, 2019): The divergence of the two genera

Allohistium and Simoperca, for which signatures of ancient introgression have been

reported, can be placed around 22 million generations ago, assuming a generation time of 1

year (Smith et al., 2011) and a divergence about 22 Ma (MacGuigan and Near, 2019). The

mutation rates chosen for our simulations (µ ∈ {10−9, 2 × 10−9}) also fall within estimates

reported for darters as these range from around 6 × 10−10 to 9 × 10−9 per site and year

(Smith et al., 2011).

Patterson’s D-statistic

Patterson’s D-statistic (Green et al., 2010) measures signals of introgression in a species

trio P1, P2, and P3 by counting the numbers of sites at which these species share alleles.

Denoting ancestral alleles as ‘A’ and derived alleles as ‘B’, ‘ABBA’ sites are those at which

P2 and P3 share the derived allele, while P1 and P3 share the derived allele at ‘BABA’

sites. By definition, the allele carried by the outgroup P4 is considered the ancestral allele
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RELIABLE DETECTION OF INTROGRESSION 11

‘A’. The D-statistic is then calculated as the difference between the number of ‘ABBA’

sites CABBA and that of ‘BABA’ sites CBABA, normalized by the sum of these two numbers:

D =
CABBA − CBABA

CABBA + CBABA

(1)

In the absence of introgression, CABBA and CBABA are expected to be equal due to

ILS, in which case D = 0. However, this expectation is based on several assumptions,

including that of equal rates for species P1 and P2, which we violated in part of our

simulations. We therefore expected that the D-statistic would indicate signals of

introgression (in the form of significant p-values) in these simulated datasets even when no

introgression occurred.

We calculated the D-statistic for each of the 4,080 simulated genomic datasets with

the program Dsuite v.r50 (Malinsky et al., 2021), using the program’s “Dtrios” module. By

using the Dsuite implementation of the D-statistic, we were able to account for

within-species variation in the calculation of CABBA and CBABA. When multiple individuals

are sampled per species, Dsuite calculates CABBA and CBABA based on the frequencies of

the ancestral and derived alleles within the species. With the frequency of the derived

allele ‘B’ at site i in the genome of species j denoted as fB,j,i and a total number of sites n,

CABBA =
n∑

i=1

(1 − fB,P1,i) × fB,P2,i × fB,P3,i (2a)

CBABA =
n∑

i=1

fB,P1,i × (1 − fB,P2,i) × fB,P3,i (2b)

For both parts of Equation 2, Dsuite defines the derived allele as the one occurring

at lower frequency in the outgroup P4 and multi-allelic sites are ignored. The significance

of D was assessed with block jackknife tests, based on 20 equally sized subsets of each

genomic dataset. In our interpretation of these results, we applied the Bonferroni

correction (Bonferroni, 1935) to account for the large number of tests that we performed.
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12 KOPPETSCH, MALINSKY, AND MATSCHINER

Tree-based Introgression Detection Methods

Besides the D-statistic, we applied four tree-based introgression detection methods to all

datasets simulated with a population size of Ne = 105 and a mutation rate of µ = 2 × 10−9,

a total of 1,830 datasets. To infer local trees as input for these methods, variants were

extracted from equally spaced windows across the simulated chromosome. We separately

extracted 5,000 windows of 200 bp, 2,000 windows of 500 bp, and 1,000 windows of 1,000

bp from each of the 1,830 datasets. These window sizes were chosen as a compromise

between too little phylogenetic information in shorter windows and the occurrence of

within-window recombination in larger windows, which could bias any phylogenetic

inference (Bryant and Hahn, 2020). With these selected window sizes and numbers, only 1

Mbp out of the 20 Mbp of the simulated chromosomes was used for phylogenetic analyses.

Additionally, per species and variable site, only the first allele of the first individual was

extracted. All invariable sites within windows were replaced with randomly selected

nucleotides A, C, G, and T, thus forming a sequence alignment for each window. By using

only one allele of one individual per species – instead of both alleles of the five simulated

individuals – we again reduced the amount of data by a factor of ten. Consequently, for

any given simulation, only 0.5% of the data used to calculate the D-statistic were also used

for tree-based analyses. This data reduction was required due to the computational

demands of our phylogenetic analyses: Because we used 1,830 genomic datasets in total

and extracted 8,000 (5,000 + 2,000 + 1,000) windows from each of these, 14.64 million

alignments were produced. As each alignment was used for phylogenetic analyses with

both maximum-likelihood and Bayesian inference (see below), a total of 29.28 million such

analyses were required.

Dtree — Conceptually similar to Patterson’s D-statistic, Dtree aims to detect

introgression by comparing the counts of alternative rooted tree topologies for a given

species trio, in a large set of local trees sampled across the genome. For any such trio P1,
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RELIABLE DETECTION OF INTROGRESSION 13

P2, and P3, three different rooted tree topologies can be found: One in which P1 and P2

are sister species, one in which P1 appears next to P3, and one in which P2 and P3 are

sisters. Like for the D-statistic, the assumptions of no introgression and no among-species

rate variation predict that, if the most frequent of these tree topologies represents the

species-tree, the other two should occur in equal frequencies due to ILS. Any significant

difference in the frequencies of the latter two topologies, assessed for example with a

one-sided binomial test, can therefore be seen as support for introgression.

In its unconstrained version (Ronco et al. 2021; also see Vanderpool et al. 2020),

Dtree is calculated from the counts of the second- and third-most frequent rooted

topologies for the species trio, C2nd and C3rd, as

Dtree =
C2nd − C3rd

C2nd + C3rd

(3)

However, the use of this unconstrained version of Dtree may underestimate high

levels of introgression when the most frequent tree topology of the three species does not

reflect the species tree (due to very high levels of genetic exchange and/or very short

internal branches). Therefore, we here applied a constrained version of Dtree to test

explicitly for introgression between P2 and P3:

Dtree =
CP2,P3 − CP1,P3

CP2,P3 + CP1,P3

, (4)

where CP2,P3 is the count of trees in which P2 and P3 are sisters, and CP1,P3 is the

count of trees that place P1 and P3 next to each other.

To generate these counts, we inferred maximum-likelihood phylogenies from each

window alignment of the 1,830 simulated genomic datasets using IQ-TREE v.2.1.2 (Minh

et al., 2020), specifying the HKY substitution model (Hasegawa et al., 1985) and P4 as

outgroup. The resulting tree sets were filtered by excluding trees with an internal branch

shorter than 0.001 substitutions per site, as these were considered uninformative (Ronco

et al., 2021). We then obtained CP1,P3 and CP2,P3 by counting how often P1 and P3, or P2
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14 KOPPETSCH, MALINSKY, AND MATSCHINER

and P3, respectively, were sister species in a set of trees. We did so separately for the sets

of trees corresponding to each simulated genomic dataset and window size, by applying the

Ruby script analyze tree asymmetry.rb (Ronco et al., 2021). Finally, a one-sided binomial

test was used to identify whether CP2,P3 was significantly larger than CP1,P3 and thus

supporting introgression between P2 and P3.

SNaQ — The SNaQ (Species Networks applying Quartets) method, implemented

in PhyloNetworks (Soĺıs-Lemus and Ané, 2016; Soĺıs-Lemus et al., 2017), is representative

of a class of methods based on the multi-species coalescent model with hybridization

(Meng and Kubatko, 2009). This class also includes approaches implemented in PhyloNet

(Yu et al., 2014; Than et al., 2008; Yu and Nakhleh, 2015) or SpeciesNetwork (Zhang et al.,

2018). From a set of local trees, SNaQ quantifies concordance factors for unrooted species

quartets (either all possible quartets or a random sample) and calculates the likelihood for

each of these quartets under the multi-species coalescent model with hybridization. By

multiplying these likelihoods over all quartets, SNaQ derives the pseudolikelihood for a

given species network. A heuristic search then allows SNaQ to estimate the network that

optimizes the pseudolikelihood for a given maximum number of hybridization events. Thus,

by repeating the SNaQ analysis with a maximum number of 0 and 1 such events, support

for hybridization can be evaluated from the difference of the resulting pseudolikelihoods.

The multi-species coalescent model with hybridization considers hybridization

events on the species level that instantaneously copy part of the genome from one species

to another. Thus, this model is violated by our simulations in a way in which it may also

be violated by most empirical cases of hybridizing species: Our simulations model

hybridization between individuals that over long time scales (2.5 million generations) of

ongoing introgression and subsequent drift, recombination, and occasional fixation has a

gradual effect on the genomes of the recipient species. We expected that – barring other

model violations – fitting such a period of hybridization and introgression to the

multi-species coalescent model with hybridization would lead to the inference of a single
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RELIABLE DETECTION OF INTROGRESSION 15

hybridization event between species. Nevertheless, we expected that the support for this

inferred hybridization event would correlate with the truth – i.e., the presence and the rate

of introgression used in our simulations. We quantified this support as the difference in the

Akaike information criterion (dAIC) (Akaike, 1974) for models that did or did not include

a hybridization event, and considered dAIC values above 10 as significant. It has been

pointed out that criteria like the Akaike information criterion are not generally suitable for

the pseudolikelihoods estimated by SNaQ (Hibbins and Hahn, 2022). However this

criterion is applicable in our case, because with no more than four species (i.e., a single

quartet), SNaQ estimates the actual likelihood and not the pseudolikelihood (Soĺıs-Lemus

and Ané, 2016). We calculated the dAIC supporting introgression separately for each

simulated genomic dataset and each of the three window sizes (200, 500, and 1,000 bp),

based on the maximum-likelihood tree sets inferred for these windows with IQ-TREE,

again excluding trees in which the internal branch was short (< 0.001 substitutions per

site). We used PhyloNetworks v.0.14.2 for these analyses, providing the correct species tree

as starting tree and specifying P4 as the outgroup when calling SNaQ.

QuIBL — QuIBL (Quantifying Introgression via Branch Lengths) is an approach

to estimate proportions of introgressed loci based on the distribution of branch lengths in a

species trio (Edelman et al., 2019). By using branch lengths as a source of information,

QuIBL is complementary to SNaQ, as the latter is informed exclusively by the topologies

of a set of local trees. All species trios in a given dataset are used by QuIBL and examined

independently of each other. Per trio, QuIBL sorts the set of local trees into three subsets,

one for each of the three possible rooted topologies of the triplet. For each of the three

subsets, QuIBL then determines the distribution of the lengths of the internal branch (in

numbers of substitutions per site), across all of the local trees within the subset. Applying

an expectation-maximization algorithm in combination with the Bayesian information

criterion (BIC) (Schwarz, 1978), it uses the shape of these distributions to determine

whether they result from a single process (i.e., ILS) or additionally from a second process.
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16 KOPPETSCH, MALINSKY, AND MATSCHINER

This second process is interpreted either as lineage sorting within a common ancestor or

introgression, depending on the relationships of the three species in a predetermined

species tree. In the latter case, the number of local trees in the respective subset,

multiplied by the proportion of them assigned to introgression rather than ILS, quantifies

the overall introgression proportion. Like the multi-species coalescent model with

hybridization implemented in SNaQ, the assumptions behind QuIBL also include a single

pulse of hybridization instead of continuous introgression over a period of time (Edelman

et al., 2019).

We applied QuIBL to the filtered sets of local trees generated using IQ-TREE for

the 1,830 genomic datasets and each of the three window sizes. The QuIBL parameters

included a likelihood precision treshold (“likelihoodthresh”) of 0.01, a limit of 50 steps for

the expectation-maximization algorithm (“numsteps”), and a scale factor of 0.5 to reduce

the step size when an ascent step fails (“gradascentscalar”), as recommended by the

authors. We further specified P4 as the outgroup to the trio formed by P1, P2, and P3.

The results of QuIBL analyses were processed with the quiblR library

(https://github.com/nbedelman/quiblR). Following Edelman et al. (2019), we considered

support for introgression significant when the difference in BIC values (dBIC) was greater

than 10.

MMS17 method — A fourth class of tree-based introgression detection methods

uses distributions of divergence times in a set of ultrametric, time-calibrated local trees

(Marcussen et al., 2014; Fontaine et al., 2015; Meyer et al., 2017). Of this class, we here

apply the method developed by Meyer, Matschiner, and Salzburger (2017) (“MMS17

method”). This method compares the mean divergence times for all three possible pairs of

species within a species trio, repeating this comparison for all possible species trios of a

given dataset. For the species trio P1, P2, and P3, the mean ages of the most recent

common ancestor (MRCA) of the pairs P1–P2, P1–P3, and P2–P3 are calculated over all

local trees. If P1 and P2 are sister species and no introgression occurred with P3, the
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RELIABLE DETECTION OF INTROGRESSION 17

P1–P3 and P2–P3 mean MRCA age estimates are expected to be similar in the absence of

introgression. In contrast, any introgression occurring between non-sister species should

reduce one of these two mean MRCA ages (while increasing the P1–P2 mean MRCA age).

The difference between these pairwise mean MRCA (dMRCA) ages is therefore informative

about past introgression within the species trio – the larger dMRCA, the stronger the

evidence for introgression (Meyer et al., 2017). On the other hand, the MMS17 method

does not include a formal statistical test allowing one to reject the null hypothesis of no

introgression. It has therefore been designed and used only to identify hypotheses of

introgression that can then be tested with other methods (Meyer et al., 2017).

We used the Bayesian program BEAST2 v.2.6.4 (Bouckaert et al., 2019) to infer

sets of time-calibrated local trees using the three alignment window sizes (200, 500, and

1,000 bp) for each of the 1,830 simulated genomic datasets. Per alignment, an input file for

BEAST2 was produced with the babette R package (Bilderbeek and Etienne, 2018),

specifying the birth-death tree process as a tree prior (Gernhard, 2008) and the HKY

substitution model (Hasegawa et al., 1985). Each tree was time-calibrated with a

strict-clock model and an age constraint on the root. This constraint was defined as a

log-normal prior distribution with a mean according to the true root age used in the

simulation of the respective dataset (assuming a generation time of one year) and a narrow

standard deviation of 0.001. Each BEAST2 analysis was performed with 5 million

Markov-chain Monte Carlo iterations. Upon completion of each BEAST2 analysis, the

resulting posterior tree distribution was summarized in the form of a

maximum-clade-credibility tree with TreeAnnotator v.2.6.4 (Heled and Bouckaert, 2013).

For each of the 1,830 genomic datasets and each window size, we used all produced

summary trees jointly as input for the MMS17 method, as described above.
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18 KOPPETSCH, MALINSKY, AND MATSCHINER

‘ABBA’-Site Clustering

In this manuscript, we propose a new test to discriminate between spurious and genuine

signals of introgression based on clustering of ‘ABBA’ sites. This test aims to distinguish

between homoplasies and introgressed sites, exploiting the fact that introgression typically

leaves behind haplotypes with clusters of multiple linked variable sites that show the

introgression pattern (Liang and Nielsen, 2014). On the other hand, homoplasies are

expected to occur individually one by one. Our new “ABBA-site clustering” test therefore

examines whether the ‘ABBA’ sites that are used for the D-statistic cluster among

variable sites along chromosomes – which would support introgression – or whether they

are distributed homogeneously as expected of homoplasies (although homoplasies can show

limited clustering as a result of mutation-rate variation along the genome; see below).

As a first step, we identify “strong ABBA sites” for which most of the individuals in

the dataset support the ‘ABBA’ pattern. Formally, these are sites for which

(1 − fB,P1) fB,P2 fB,P3 (1 − fB,P4) + fB,P1 (1 − fB,P2) (1 − fB,P3) fB,P4 > 0.5, (5)

where fB,P1, fB,P2, fB,P3, and fB,P4 are the frequencies of the derived allele ‘B’ in

populations P1, P2, P3, and the outgroup (see Equation 4a in Malinsky et al. 2021). We

then test for clustering of these sites along chromosomes in two ways, the first of which is

more sensitive, while the other one is robust to mutation-rate variation along the genome.

For the “sensitive” version of the test, we let g⃗ be a vector of all polymorphic sites

on a chromosome or scaffold. We then define another vector i⃗, where we record the indices

of “strong ABBA sites” within g⃗. For data from multiple chromosomes or scaffolds, vectors

g⃗c and i⃗c are first calculated for each such unit c and then concatenated to form g⃗ and i⃗.

We divide the values in i⃗ by the length of g⃗ (the number of polymorphic sites in the

dataset), obtaining a normalized vector i⃗n on the interval [0,1]. To test for clustering of

“strong ABBA sites” we compare this normalized i⃗n to the standard uniform distribution

using a one-sample Kolmogorov-Smirnov test (Kolmogorov, 1933; Simard and L’Ecuyer,

2011). A significant test statistic supports clustering of “strong ABBA sites” among
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RELIABLE DETECTION OF INTROGRESSION 19

polymorphic sites along chromosomes and thus provides additional support for interpreting

any signal of introgression as being genuine.

Under certain circumstances (see Results), the “sensitive” test version can show a

clustering of “strong ABBA sites” arising purely from variation in the mutation rate along

the chromosome. Therefore, we developed a second, “robust” version of the

‘ABBA’-site-clustering test, in which we replace vector g⃗ with a vector h⃗ that includes not

all polymorphic sites, but only “strong ABBA sites” and the analogously identified “strong

BABA sites”. This test version is robust because local mutation-rate variation increases

the frequencies of “strong ABBA sites” and “strong BABA sites” equally in mutation

hotspots. On the other hand, this version of the test is less sensitive than the first version,

especially in cases where there are few strong ‘BABA’ sites; thus, for example, this test

version might not detect strong introgression in the absence of ILS.

We implemented both versions of this test in the software Dsuite, where they can

be called jointly with the function “--ABBAclustering” of the Dtrio module (Malinsky

et al., 2021). We then assessed the power and reliability of both test versions by applying

them to all simulated genomic datasets.

As a further evaluation of the performance of the ‘ABBA’-site-clustering test, we

also applied it to an empirical dataset that we expected to be free from introgression but

characterized by ILS. Specifically, we used a subset of the single-nucleotide polymorphism

(SNP) data of Ronco et al. (2021), based on Illumina sequencing for all ∼ 250 cichlid fish

species of Lake Tanganyika and mapping to the Nile tilapia reference assembly (Conte

et al., 2017). As the investigation by Ronco et al. (2021) had shown, introgression has

occurred frequently among cichlid species within the taxonomic tribes of the Lake

Tanganyika cichlid radiation, but only rarely among species of different tribes. We

therefore reduced the SNP dataset of Ronco et al. (2021) to individuals of randomly

selected species from each of the four tribes Boulengerochromini (monotypic, including

only Boulengerochromis microlepis), Lamprologini, Cyprichromini, and Tropheini,
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20 KOPPETSCH, MALINSKY, AND MATSCHINER

repeating the random selection five times to produce datasets for five species quartets. All

of these tribes diverged between 10.5 and 7 Ma (Ronco et al., 2021). To the best of our

knowledge, introgression between these tribes has not previously been reported and

appeared absent in the study of Ronco et al. (2021). After subsetting the SNP dataset to

include only the selected species, newly monomorphic sites were removed with BCFtools

v.1.17 (Li, 2011), leaving between 2,932,195 and 3,172,410 SNPs in each dataset. Both

versions of the ‘ABBA’-site clustering test were then applied to the resulting SNP data

subsets with Dsuite’s Dtrio module (placing B. microlepis as outgroup), while also

calculating the D-statistic and its significance.

Results

Simulations

The numbers of variable sites in simulated datasets ranged from 1.46–8.20 million

(7.3–41.0%), depending primarily on the mutation rate µ and the divergence time tP1,P2

(Table 1). Between 35,000 and 1.3 million (0.175–6.5%) of these sites were multi-allelic.

The alignments of lengths 200, 500, and 1,000 bp had mean numbers of variables sites

between 14.6 and 410.2 (Table 1). Pairwise genetic distances between species (dxy) for

datasets with a population size Ne = 105, a mutation rate µ = 2 × 10−9, and a

recombination rate r = 10−8 ranged from 0.03 to 0.08 among P1 and P2 (dxy(P1,P2)) with

a very slow P2 rate (s=0.25), and from 0.09 to 0.25 with a very fast P2 rate (s=4) (see

Supplementary Table S4).

The simulated data based on the divergence model in Figure 1 had very little or no

ILS. While the mean lengths of chromosomal regions unbroken by recombination – termed

“c-genes” by Doyle (1995) – were between 18 and 20 bp, the lengths of chromosomal

regions sharing the same species topology (“single-topology tracts”) were far longer.

Without introgression (m = 0), almost all simulated chromosomes (58 out of 60 for which

we made this assessment) had the same topology – that of the species tree – from
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RELIABLE DETECTION OF INTROGRESSION 21

beginning to end. The two exceptions were datasets simulated with the population size

Ne = 105 that included three and two single-topology tracts, respectively.

With introgression rates increasing from m = 10−9 to m = 10−7, the mean lengths

of single-topology tracts decreased from a minimum of 64,516 bp (and a maximum of the

chromosome length) to a range between 7,132 and 10,010 bp with a population size of

Ne = 104, and from 22,026–217,391 bp to 422–789 bp with Ne = 105. However, with the

highest simulated rate of introgression m = 10−6, the lengths of single-topology tracts

mostly increased again, to 2,246–95,238 bp with Ne = 104 and to 86–1,277 bp with

Ne = 105 (Supplementary Table S1). The reason for this was a dominance of regions with

introgression in these chromosomes, causing them to form single-topology tracts.

While only 0–3.7% of the chromosome were affected by introgression with

m = 10−9, these proportions grew to 1.4–10.0%, 30.6–46.5%, and 95.7–99.5% with

m = 10−8, 10−7, and 10−6, respectively. Because of these extreme differences, we focus on

the scenarios of weak (m = 10−8) and strong introgression (m = 10−7), besides the scenario

without introgression (m = 0), in the remainder of the Results section. We present all

results, including those obtained with very weak (m = 10−9) and very strong introgression

(m = 10−6) in the Supplementary Material.

Patterson’s D-statistic

As expected, Patterson’s D-statistic reliably indicated introgression when it was present

and rate variation was absent (s = 1). With a population size Ne = 105 and mutation rate

µ = 2 × 10−9 (Fig. 2), the D-statistic was below 0.015 and insignificant (p ⩾ 0.05) for all

replicate datasets when introgression was absent (m = 0), regardless of the divergence time

tP1,P2 (Fig. 2a). With weak (m = 10−8) or strong introgression (m = 10−7), on the other

hand, the D-statistic was in the ranges of 0.04–0.31 and 0.33–0.73, respectively, and in all

cases highly significant (p < 10−10) (Fig. 2b,c). The D-statistic was lower (0–0.05) and in

some cases not statistically significant in settings with very weak (m = 10−9) introgression,
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22 KOPPETSCH, MALINSKY, AND MATSCHINER

and higher (0.59–0.87) and always significant (p < 10−16) in settings with very strong

(m = 10−6) introgression (Supplementary Fig. S2). In all cases, the D-statistic decreased

with increasing age of the phylogeny (i.e. with tP1,P2), suggesting that both false and true

signals of introgression would be even stronger in groups with younger divergences. This

decrease with age was caused by homoplasies and reversals accumulating on the longer

branches of the older phylogenies, augmenting both CABBA and CBABA (Supplementary

Note 1). Simulations with a lower population size (Ne = 104) or a lower mutation rate

(µ = 1 × 10−9) produced the same patterns (Supplementary Figs. S1, S3, and S4).

In contrast to the results obtained without rate variation, the D-statistic was not a

reliable indicator of introgression when rate variation was present. While the D-statistic

was significant for nearly all datasets simulated with introgression (Supplementary Figs.

S1–S4), it was also significant for all datasets simulated without introgression (m = 0)

whenever rate variation was present. In these cases, the D-statistic ranged from 0.05 to

0.21 (p < 4.4 × 10−10) (Fig. 2d; Supplementary Figs. S1–S4).

Like the decrease of the D-statistic with increasing age of the phylogeny, the

false-positive signals of introgression were caused by homoplasies and reversals. This can be

explained focusing on the results obtained with a very fast rate of the P2 branch (s = 4)

on the youngest phylogeny (tP1,P2 = 10 million generations), shown in Supplementary

Figure S2. The high D-statistic of 0.19–0.20 for these simulated datasets resulted from a

CABBA in the range of 42,366–43,403 and a CBABA around 28,756–29,355. Perhaps contrary

to expectations, this D-statistic does not support introgression between P2 and P3, but

instead between P1 and P3 (Dsuite automatically rotates P1 and P2 so that D ⩾ 0). A

detailed analysis of one replicate simulation output explains this result: As expected, the

faster rate of evolution of P2 led to more homoplasies shared between P2 and P3 (11,583;

considering only bi-allelic sites) than between P1 and P3 (3,314). However, as the outgroup

P4 had a longer branch than P3, this difference was more than compensated for by a

greater number of homoplasies between P2 and P4 (16,856) compared to P1 and P4
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RELIABLE DETECTION OF INTROGRESSION 23

(4,690). Additionally, far more reversals of substitutions in the common ancestor of P1, P2,

and P3 occurred on the branch leading to P2 (5,990) than on that leading to P1 (1,697),

further increasing allele sharing between P1 and P3. The remaining difference between

CABBA and CBABA may be explained by multi-allelic sites, of which there were 21,123.

The D-statistic was similarly high, in the range of 0.18–0.20, in datasets produced

without introgression (m = 0) and a very slow rate of the P2 branch (s = 0.25), but it

supported introgression between P2 and P3, not between P1 and P3, in these instances

(Fig. 2d). As in the cases with an increased P2 rate, the imbalance between a CABBA of

11,565–12,098 and a CBABA of 7,877–8,211 is explained by homoplasies and reversals:

While P1 and P3 shared more homoplasies (3,282) than P2 and P3 (1,046), P1 also shared

even more homoplasies with P4 (4,679; compared to 1,493 homoplasies shared between P2

and P4). Additionally, more reversals of substitutions in the common ancestor of P1, P2,

and P3 occurred on the branch leading to P1 (1,637) compared to P2 (509), resulting in

more allele sharing between P2 and P3 and thus the imbalance between CABBA and CBABA.

The false signals of introgression were not exclusive to the datasets simulated with

extreme rate variation (s = 0.25 and s = 4), but also affected the datasets with more

modest rate variation (s = 0.5 and s = 2). While the D-statistic was lower in these cases

(0.05–0.14), it remained highly significant for all these datasets (p < 10−9) (Supplementary

Figs. S1–S4).

Tree-based Introgression Detection Methods

Dtree — Sets of maximum-likelihood trees, generated for the 1,830 simulated

datasets, produced high Dtree values up to around 1, even when no introgression was

present (Fig. 3a,d). This pattern did not seem to be affected by rate variation (Fig. 3d),

and was found with the alignment lengths 200, 500, and 1,000 bp (Fig. 3a,d;

Supplementary Figs. S5–S7). The applied binomial test did not support a significant

difference (p > 0.05) between CP2,P3 and CP1,P3 in all cases without introgression. These
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high but non-significant Dtree values resulted from stochastic variation in the small

numbers of trees that are not concordant with the species phylogeny. For example, with

the youngest phylogeny (tP1,P2 = 10 million generations) and an alignment length of 500

bp, no more than 14 out of 2,000 trees were discordant for any of the 50 replicates with P2

branch rate s ∈ {0.25, 1, 4}. With older phylogenies and the same alignment length, these

numbers of discordant trees remained in the ranges of 4–46 and 17–139, for tP1,P2 = 20 and

tP1,P2 = 30 million generations, respectively.

The lack of significance could indicate that unlike Patterson’s D-statistic, Dtree

might be robust to rate variation. Alternatively, however, it could also result from the

reduced amount of data used in tree-based analyses (covering only 1 Mbp of the 20

Mbp-chromosome). If rate variation combined with homoplasies would influence the ratio

of CP2,P3 and CP1,P3, it is conceivable, that this becomes apparent only with larger

numbers of discordant trees. To test whether the small numbers of discordant trees may

hide a weak influence of rate variation, we compared the mean values for CP2,P3 and CP1,P3

across all replicates for settings with s < 1 and s > 1 (Supplementary Table S2). We

expected that if rate variation affected Dtree in the same direction as Patterson’s D, the

mean values of CP2,P3 should generally be larger than those for CP1,P3 when s < 1, and vice

versa. Focusing only on those settings for which we had simulated 50 replicate datasets,

this was in fact the case for 10 out of 12 settings (the two mean values being small and

equal in the remaining two settings) (Supplementary Table S2). Thus, homoplasies and

rate variation appear to influence topologies in the same direction as they influence site

patterns. However their effect on tree topologies appears minimal, so that it can only be

noticed when assessing a large number of replicate analyses jointly. Moreover, the influence

of homoplasies and rate variation on Dtree was clearly far weaker than the effect of true

introgression. When introgression was included in the simulations, its presence was reliably

detected for migration rates m ⩾ 10−8, regardless of divergence time tP1,P2 or alignment

length (Fig. 3; Supplementary Figs. S5–S7). Like Patterson’s D-statistic, Dtree values were
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decreasing with increasing divergence times (e.g., Fig. 3b). This was apparently caused by

added stochasticity in tree topologies resulting from homoplasious substitutions, as both

types of discordant trees became more frequent with older divergence times

(Supplementary Table S3).

SNaQ — The maximum-likelihood values reported by SNaQ were in all cases

equally good or better for the model that included a hybridization event, compared to the

hybridization-free model (Supplementary Table S1). No effect of rate variation was

recorded, and SNaQ correctly favored the model without hybridization when analyzing

data simulated without introgression (Fig. 3g,j; Supplementary Figs. S8–S10). However,

SNaQ had a low power to detect weak introgression (m ⩽ 10−8) (Fig. 3h,k; Supplementary

Figs. S8–S10). Only with a strong introgression rate in the simulations (m ⩾ 10−7) did

SNaQ detect significant signals of it (e.g., Fig. 3i,l). The dAIC values ranged from 0.60 to

10.36 (with a single significant dAIC value > 10; Fig. 3k) when weak introgression

(m = 10−8) was present (Fig. 3h,k), but increased to significant values between 39.43 and

73.06 with strong introgression (m = 10−7) (Fig. 3i,l). As with Patterson’s D-statistic or

Dtree, signals of introgression became weaker with increasing divergence times (Fig. 3i,l),

probably because of the generally higher numbers of discordant trees inferred in those

cases. The patterns described above were equally found with all tested alignment lengths

(Supplementary Figs. S8–S10), and therefore seemed to be unaffected by it.

QuIBL — QuIBL produced signals of introgression even when neither rate

variation nor introgression were present (s = 1, m = 0) (Fig. 3m). Analyzing sets of trees

generated for alignments of 500 bp, four out of 50 simulation replicates with tP1,P2 = 20

million generations and ten replicates with tP1,P2 = 30 million generations produced

significant results (Fig. 3m). This changed dramatically for different alignment lengths.

With trees produced under these settings (s = 1, m = 0) for alignments of 200 bp, QuIBL

reported significant results for all ten replicates, regardless of phylogeny age
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(Supplementary Fig. S11). On the other hand, with alignments of 1,000 bp, none of the

results were significant (Supplementary Fig. S13). Like the level of significance, the

introgression proportion estimated by QuIBL was higher with shorter alignments; ranging

from 0.01 to 0.05 with alignments of 200 bp, from 0 to 0.01 with alignments of 500 bp, and

remaining around 0 when alignments of 1,000 bp were used (Supplementary Figs.

S11–S13).

Adding rate variation while still excluding introgression (m = 0) led to fewer

significant results with decreased rates of the P2 branch (s < 1); however, even more

significant results were found for faster rates (s > 1) (Fig. 3m,p; Supplementary Fig. S12).

With a very slow rate (s = 0.25) of the P2 branch, 12 of the 50 replicate tree sets for

alignments of 500 bp produced significant results, though only those with tP1,P2 = 30

million generations (Fig. 3p). On the other hand, an increased rate of branch P2 (s = 4)

led to even more significant false-positive signals of introgression, particularly for older

phylogenies (2, 18, and 49 significant results out of 50 for tP1,P2 = 10, 20, and 30 million

generations, respectively) (Supplementary Fig. S12). As before without rate variation, this

pattern was affected by the length of the alignments used to produce the tree sets. With

alignments of 200 bp, almost all analyses produced significant results, while alignments of

1,000 bp led to results that were in most cases non-significant (Supplementary Figs. S11

and S13).

When introgression was simulated with m ⩾ 10−7, QuIBL detected it reliably, but

failed to detect it in most cases (478 out of 810 datasets) when m = 10−8. The

introgression proportion was estimated between 0.01–0.08 with m = 10−8 and between 0.13

and 0.24 with m = 10−7, which was influenced only to a minor degree by rate variation (s),

phylogeny age (tP1,P2), and alignment length (Fig. 3n,o,q,r; Supplementary Figs. S11–S13).

MMS17 method — The MMS17 method performed as expected when neither

rate variation nor introgression were present (Fig. 3s; Supplementary Figs. S14–S16), with

a difference between the two oldest pairwise mean MRCA ages (dMRCA) close to 0
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(between 0 and 0.07 million generations). With increasing levels of introgression, dMRCA

was continuously growing, to 0.14–0.42 million generations when m = 10−8 and 1.58–2.47

million generations when m = 10−7. Phylogeny age (tP1,P2) had no noticeable influence on

dMRCA in these cases, but dMRCA was slightly higher with shorter alignments compared

to longer ones (Pearson’s product-moment correlation, p < 0.001; Supplementary Figs.

S14–S16).

However, when rate variation was simulated, the MMS17 method became rather

unreliable, particularly with faster rates (s ⩾ 1) of the P2 branch (Supplementary Figs.

S14–S16). With the very fast P2 rate (s = 4) and the youngest phylogeny (tP1,P2 = 10

million generations), dMRCA increased to values between 1.45 and 4.10 myr, again

depending on alignment length (Pearson’s product-moment correlation, p < 0.001). These

strong signals were the result of local trees in which P2 was incorrectly placed as the sister

to a clade combining P1 and P3. As this placement allowed an extension of the P2 branch

length, the inferred rate variation across the phylogeny was lowered, improving the prior

probability of the tree in the strict-clock model. With the older phylogenies (tP1,P2 ⩾ 20

million generations) and the very fast rate for the P2 branch (s = 4), the two oldest mean

pairwise MRCA ages were no longer those between P1 and P3 and between P2 and P3,

leading to erroneous signals (Supplementary Figs. S14–S16).

In contrast, a slower rate (s ⩽ 1) of the P2 branch did not have a strong influence

on dMRCA (Fig. v). An increasing false signal of introgression with increasing age of the

phylogeny could nevertheless be observed when the tree set was based on short alignments

of 200 bp (Supplementary Fig. S14). In these cases, dMRCA ranged between 0.23 to 0.32

million generations.

‘ABBA’-Site Clustering

Across the tested parameter space, our new method based on ‘ABBA’-site clustering

proved to be reliable in distinguishing false positives from genuine introgression signals
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(Figs. 4 and 5; Supplementary Figs. S17–S24). Applied to the datasets simulated without

introgression (m = 0) and without rate variation (s = 1), the “robust” version of the test

did not produce a single significant result (Fig. 5a; Supplementary Figs. S21–S24). While

the “sensitive” version returned for the same parameters weakly significant false-positive

signals for up to 7 out of 240 datasets (p > 0.0017; Fig. 4a; Supplementary Figs. S17–S20),

all of these became non-significant after Bonferroni correction. Importantly, adding branch

rate variation (s ∈ {0.25, 0.5, 2, 4}) did not lead to false positives. There were weakly

significant (p > 0.0002) signals for 37 out of 720 datasets with the “sensitive” test, all of

which became non-significant after Bonferroni correction (Fig. 4d; Supplementary Figs.

S17–S20). The “robust” test version again did not return a single false-positive (Fig. 5d;

Supplementary Figs. S21–S24).

Fig. 5. Signals of introgression detected with the robust version of the new ‘ABBA’-site clustering test for datasets
simulated for 50 replicates with a population size Ne = 105, a mutation rate µ = 2× 10−9, either no (m = 0; a,d),
weak (m = 10−8 ; b,e), or strong (m = 10−7; c,f) introgression, and either an unchanged (s = 1; a–c), or slow
(s = 0.25; d–f) rate of branch P2. All results obtained with other settings are shown in Supplementary Figures
S21–S24. Circles in black indicate significant results (p < 0.05), and only these are summarized with box plots.

Similar results were obtained with a variable recombination rate, where three out of

90 datasets produced significant results with the “sensitive” test version (p > 0.01; all

non-significant after Bonferroni correction; Supplementary Note S2, Supplementary Fig.

S25) and none were significant with the “robust” test version (Supplementary Fig. S26).

For increased levels of ILS (Supplementary Note S3; Supplementary Figs. S27–S32), 16 out

of 360 significant values were recorded with the “sensitive” test version (p > 0.002)

(Supplementary Figs. S27–S29), while a single significant value was recorded with the

“robust” test version (p = 0.02) (Supplementary Figs. S30–S32). Again, all of these

became non-significant after Bonferroni correction.

Next, we assessed whether mutation-rate variation along the chromosome could lead

to clustering of ‘ABBA’ sites and thus to false-positive signals in our new test. To this end,

we performed an additional set of simulations (Supplementary Note S4) with among-site

mutation-rate variation, and applied both versions of the ‘ABBA’-site-clustering test to
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these additional datasets. The presence of among-site mutation-rate variation led to some

false positives in the “sensitive” version of the test (Supplementary Fig. S33). Of 30

datasets simulated with neither introgression (m = 0) nor among-species rate variation

(s = 1), 10 yielded significant signals of ‘ABBA’-site clustering (p ⩾ 0.00008), and one of

these remained significant after Bonferroni correction. Adding among-species rate variation

(s ∈ {0.25, 4}) led to similar results (Supplementary Fig. S33). Of the 60 datasets

simulated with these settings, 15 produced significant results (p ⩾ 3 × 10−7) and two of

these remained significant after Bonferroni correction. In contrast, the among-site

mutation rate variation did not influence the “robust” version of the test, producing not a

single significant result when introgression was excluded (Supplementary Fig. S34).

The presence of introgression led to significant ‘ABBA’-site clustering for a large

majority of simulated datasets (Figs. 5, 5; Supplementary Figs. S17–S24). The “sensitive”

version of the test was always significant for strong (m ⩾ 10−7) and very strong rates

(m ⩾ 10−6) of introgression (Fig. 4f; Supplementary Figs. S17–S20). All false negatives –

cases that did not lead to significant clustering despite the presence of introgression – were

limited to settings where the P2 rate was increased (s > 1) and introgression was weak

(m = 10−8) or very weak (m = 10−9) (305 out of 600; for Ne ∈ {104,105}) (Supplementary

Figs. S17–S20). In contrast to the “sensitive” version, the “robust” version of the

‘ABBA’-site-clustering test produced more false-negative results in the presence of

introgression (Fig. 5e,f; Supplementary Figs. S21–S24). While fewer false-negative results

were found with weak introgression (m = 10−8; 247 out of 660), particularly cases with

very weak (m = 10−9; 261 out of 300), strong (m = 10−7; 394 out of 660), and very strong

introgression rates (m = 10−6; 285 out of 300) did not lead to significant ‘ABBA’-site

clustering when the population size was large (Ne = 105) (Fig. 5e,f; Supplementary Figs.

S21–S22). For a lower population size (Ne = 104) fewer false-negative results were found:

While cases with strong (m = 10−7; 61 out of 300), very strong (m = 10−6; 209 out of 300),

and very weak introgression rates (m = 10−9; 182 out of 300) produced moderate numbers
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of false-negative results, only very few (3 out of 300) non-significant results were present

with a weak rate of introgression (m = 10−8) (Supplementary Figs. S23–S24).

Applying the ‘ABBA’-site-clustering test to the presumably introgression-free

empirical dataset for four tribes of Lake Tanganyika cichlids led to the surprising result of

highly significant clustering, regardless of whether the “sensitive” or “robust” version of

the test were considered and which combinations of species were selected from the four

tribes (p < 0.0002 in all cases). We investigated these results further by focusing on a

randomly selected species quartet, comprising Tropheus polli (Tropheini), Cyprichromis

pavo (Cyprichromini), Neolamprologus savoryi (Lamprologini), and Boulengerochromis

microlepis (Boulengerochromini, placed as outgroup; Ronco et al. 2021). For this species

quartet, the “sensitive” and “robust” versions of the ‘ABBA’-site-clustering test strongly

supported clustering with p = 2.3 × 10−16 (the smallest value handled by Dsuite) and

p = 7.8 × 10−9, respectively. In stark contrast, Dsuite reported a low and non-significant

D-statistic of D = 0.01 for this quartet (with Cyprichromis pavo and Tropheus polli placed

in positions P1 and P2, respectively, based on the number of shared alleles with P3)

(Supplementary Table S5).

However, repeating the analysis separately for each of the 23 linkage groups (LG) of

the Nile tilapia reference assembly (Conte et al., 2017) revealed that the only linkage group

for which both versions of the ‘ABBA’-site-clustering test reported significant clustering

was LG2 (p = 2.3 × 10−16 for both test versions), where we also found a high and

significant D-statistic (D = 0.285; p = 1.8 × 10−5). Clustering of “strong ABBA sites” was

not detected on any of the other linkage groups with the “robust” version of the test;

however, the “sensitive” test version supported clustering on 18 other linkage groups (with

4.7 × 10−6 ⩽ p ⩽ 0.04), suggesting perhaps an effect of mutation rate variation along the

chromosomes. Plotting the positions of “strong ABBA sites” relative to all polymorphic

sites (vector g⃗ of the “sensitive” test version) or relative to all “strong ABBA sites” and

“strong BABA sites” (vector h⃗ of the “robust” test version) clearly illustrates the
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clustering on LG2 (Fig. 6 for LGs 1–3; Supplementary Figs. S35 and S36 for all LGs).

Repeating this analysis for other quartets of species from the four tribes revealed that the

pattern of strong clustering on LG2 was shared by all of them.

Fig. 6. Clustering of ‘ABBA’ sites in empirical data for Lake Tanganyika cichlid fishes. Results are shown for the
first three linkage groups (LG) of the Nile tilapia reference assembly; results for all linkage groups are presented in
Supplementary Figures S35 and S36. With sorted “strong ABBA sites” on the horizontal axis, the black line
indicates their position within a vector of polymorphic sites on the vertical axis. A straight, diagonal line therefore
illustrates a homogeneous distribution of these sites within this vector, while changes in the gradient illustrate
clustering. significant p-values are marked in bold. The gray area indicates a region with increased frequency of
“strong ABBA sites” in the first half of LG2.

Discussion

As genome-wide data are becoming available for more and more species across the tree of

life, these give us the opportunity to investigate the extent of between-species

hybridization and introgression in unprecedented detail (Taylor and Larson, 2019). These

data have already revealed an unexpected frequency of ongoing or recent introgression, and

are beginning to uncover their occurrence also in the deep past (MacGuigan and Near 2019

[Percidae]; Pavón-Vázquez et al. 2021 [Varanidae]; Hodson et al. 2022 [Sciaridae,

Cecidomyiidae]). However, the results of studies on ancient introgression must be critically

evaluated when they are based on introgression detection methods that were originally

developed for recently diverged species or populations (Pease and Hahn, 2015; Hibbins and

Hahn, 2022; Zheng and Janke, 2018).

Our results confirm a recent report that demonstrated a sensitivity of Patterson’s

D-statistic and the related D3 (Hahn and Hibbins, 2019) and HyDe (Blischak et al., 2018)

tests to among-species rate variation (Frankel and Ané, 2023). We extended these previous

results to data simulated with a more diverse range of parameters, including different

phylogeny ages, population sizes, mutation rates, and both homogeneous and variable

recombination rates, corroborating that the D-statistic is generally sensitive to

among-species variation in mutation rates.
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To distinguish between false signals caused by among-species rate variation and

genuine indicators of introgression, we propose a test for clustering of ‘ABBA’ sites along

the chromosome, a pattern which arises when several polymorphisms are derived from the

same introgressed haplotype. Our analyses demonstrated that this test is robust to

among-species rate variation, with no false positives after multiple testing correction, and

few false negatives across a wide range of datasets. False negatives for the “sensitive” test

version were limited mainly to cases of weak introgression in combination with an elevated

substitution rate in P2. The “robust” test version, on the other hand, performed most

reliably when introgression rates were intermediate, with only a minor or no influence of

among-species rate variation. The reason why the “robust” test version returned many

false negatives with very strong introgression was that most of the simulated chromosomes

carried introgressed sequences in very long continuous blocks. However, such cases of very

strong introgression could always be identified reliably by their very high and significant

D-statistic, along with a highly significant result of the “sensitive” version of the

‘ABBA’-site-clustering test. In their combination, the ‘ABBA’-site-clustering test and

D-statistics thus form a powerful set of tools to detect introgression across a wide range of

settings.

In addition to introgression, clustering of ‘ABBA’ sites could in principle be

expected to arise from ILS, as ILS-derived tracts can contain multiple genetic variants.

Nevertheless, we showed here that the ‘ABBA’-site clustering test is robust to ILS (at least

when recombination rates are not extremely low; see below). In the absence of introgression

but presence of ILS, we did not observe any false-positives after multiple-testing

correction. This difference in sensitivity to introgression vs. ILS cannot be explained by the

lengths of the tracts produced by these two processes, as these were comparable across the

simulations. Instead, the explanation likely lies in the difference in numbers of ‘ABBA’ sites

within introgressed vs. ILS tracts. Haplotypes introduced through introgression may often

have had a long time, at least ten million generations in our simulations, to accumulate the
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mutations that produce ‘ABBA’ sites following introgression between P3 and P2. On the

other hand, haplotypes introduced through ILS had much less time for the accumulation of

mutations that would ultimately produce ‘ABBA’ or ‘BABA’ sites – on average, one

coalescent unit (2Ne generations) – in the common ancestor of P1, P2, and P3. Thus, the

tracts produced by ILS carry fewer ‘ABBA’ sites than those produced by introgression,

which, as a consequence, renders the ‘ABBA’-site-clustering test largely robust to ILS.

Besides introgression and ILS, mutation-rate variation along the chromosome, for

example driven by an elevated rate in GC-rich mutation hotspots (Ségurel et al., 2014;

Nesta et al., 2021), can also cause clustering of ‘ABBA’ sites. Both versions of the

‘ABBA’-site-clustering test are designed to account for this variation to some degree. In

the “sensitive” test version, clustering of “strong ABBA sites” is considered relative to all

polymorphic sites, while the “robust” version of the test assesses clustering relative to

“strong BABA sites”. All of these increase in frequency along with ‘ABBA’ sites in

mutation hotspots. However, our simulations revealed that, at least for some parameter

combinations, the frequency of ‘ABBA’-pattern homoplasies among all polymorphic sites is

higher in mutation-rate hotspots, leading to their clustering and some false positives for

the “sensitive” test . However, the relative probabilities of ‘ABBA’ and ‘BABA’

homoplasies both scale equally with the local mutation rate. This is why the version of the

test that focuses only on these two types of sites is robust to variation in the mutation rate

along the chromosome.

The application of our ‘ABBA’-site-clustering test to a presumably

introgression-free empirical dataset led to the surprise identification of a single linkage

group – LG2 – on which not just our test produced a strong signal of introgression, but

where this signal was also corroborated by a high and clearly significant D-statistic. For

other linkage groups, in contrast, significant clustering was detected only with the

“sensitive” version, but not the “robust” version of the ‘ABBA’-site-clustering test,

suggesting that this clustering is in fact derived from mutation-rate variation and not from
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introgression. For LG2, the signal detected by our test as well as the D-statistic stemmed

from a high frequency of ‘ABBA’ sites on the first half of the linkage group. Due to the

clear localization of the signal to a specific region of the chromosome and its consistency

across many different species quartets, we suspect that it may be contained within a large

region of very low (or no) recombination, possibly facilitated by a chromosomal inversion

(e.g. Mirarab et al., 2024). Two scenarios could then explain the localized clustering of

‘ABBA’ sites: The region could have been transferred between species due to introgression

that otherwise left little to no signal in the genome, or it could result from ILS. Further

comparative analyses of species quartets could help to discriminate between these two

options, and might reveal interesting insights into the evolution of Lake Tanganyika

cichlids in a future study. Here, however, we limit our conclusion for this analysis to the

performance of the ‘ABBA’-site-clustering test: We conclude that the “robust” version of

the test performed generally reliably, except potentially when large regions with a

near-zero recombination rate (resulting, e.g., from chromosomal inversions) are present. In

such cases, our test, but also other methods including D-statistics, may produce false

signals of introgression, deriving from ILS. We therefore recommend (in line with other

recent studies; Mirarab et al. 2024) that genomes should be scanned for such regions before

conclusions are drawn, and note that our ‘ABBA’-site-clustering test can facilitate their

identification, as in our example of Lake Tanganyika cichlids.

Our implementation of the ‘ABBA’-site-clustering test in the program Dsuite is

easy to use and comes with negligible added cost to Dsuite analyses. Given that Dsuite is

among the fastest tools available for the calculation of D-statistics (Malinsky et al., 2021),

the additional application of the ‘ABBA’-site clustering test should be computationally

feasible for all users.

Our analyses of simulated datasets revealed that tree-based methods can be useful

for the detection of introgression when rate variation is present, and identified the

conditions under which each approach performs reliably. While we observed an effect of
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long-branch attraction affecting the Dtree statistic, this effect was weak and only noticeable

when all results were considered in aggregate. In fact, none of the datasets simulated

without introgression produced a false-positive, significant Dtree statistic, even when Dtree

itself reached the maximum value of 1.0 (Fig. 3a). On the other hand, Dtree was

consistently large and significant even with weak introgression (m = 10−8; Fig. 3b,e,h),

suggesting that Dtree is a powerful detector of introgression.

Besides Dtree, SNaQ appeared to be robust to rate variation across our simulated

datasets (Fig. 3j,p). Given that SNaQ analyzes tree topologies, however, we caution that

the same weak bias that affected Dtree might also be relevant for SNaQ. Like for Dtree, we

thus advise that weaker signals (small dAIC values) reported by SNaQ might better be

ignored. Furthermore, it has been pointed out that the use of AIC is inappropriate for the

comparison of SNaQ results, due to the pseudolikelihood framework employed by SNaQ

(Hibbins and Hahn, 2022). To avoid this issue, users of SNaQ may want to focus – like we

did – on sets of four taxa with putative introgression, in which case SNaQ calculates and

reports actual likelihood values (Soĺıs-Lemus and Ané, 2016).

Finally, we found that the performance of QuIBL depended strongly on the length

of the alignments used to generate the input tree set. Given that QuIBL produced many

false-positive signals of introgression regardless of rate variation when the alignments were

short (Supplementary Fig. S11), the use of longer alignments, with lengths of at least 1,000

bp may be recommendable. With such alignments as input, QuIBL performed rather

reliably (Supplementary Fig. S13) and detected most cases of stronger introgression.

In practice, the inference of ancient introgression between divergent species may

often be hampered by the requirements of detection methods. Site-pattern-based methods

(such as the D-statistic and the ‘ABBA’-site clustering test) require SNP datasets that are

typically obtained through read mapping towards a reference genome assembly. When

investigating divergent taxa, however, it may no longer be possible to map all of them

reliably to the same reference genome. As a result, SNP datasets produced for such taxa
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may be limited and prone to reference bias particularly in taxa with lower read coverage,

which can generate misleading signals of introgression (Günther and Nettelblad, 2019). To

minimize the chance of reference bias while also reducing the numbers of homoplasies,

outgroup species should be chosen that are as closely related to the ingroup as possible. As

an alternative that does not depend on a reference, multi-marker sets of alignments have

traditionally been produced through ortholog-identification approaches focusing on genes

or ultra-conserved elements. While these approaches may be more suited for divergent taxa

than read mapping, they are generally limited to certain regions of the genome,

corresponding to a set of input query sequences.

Fortunately, two recent developments promise to overcome these limitations,

rendering larger regions of the genome accessible for the detection of ancient introgression:

First, methods for whole-genome alignment have finally matured to the degree that they

can be applied to hundreds of genome assemblies of highly diverged taxa (Armstrong

et al., 2020). By using assemblies instead of mapped reads, these whole-genome alignments

are immune to reference bias, and allow the extraction of massive numbers of SNPs for

site-pattern-based methods, or of alignment blocks for tree-based methods. Second, more

and more genome assemblies are now highly contiguous, chromosome-resolved or nearly so

(Rhie et al., 2021; Formenti et al., 2022). This is relevant for the completeness of

whole-genome alignments, and reduces their fragmentation. Both will contribute to the

utility of the new ‘ABBA’-site clustering test, given that this test requires contiguous

genomic blocks within which clustering can be observed.

In their combination, these new developments are now allowing us to push the

limits of reliable introgression detection, enabling the inference of introgression even among

species that have diverged many tens of millions of years ago. We are thus coming closer to

being able to assess the true extent of hybridization and introgression across the tree of life.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syae028/7697831 by guest on 03 July 2024



Ac
ce
pt
ed
M
an
us
cr
ipt

RELIABLE DETECTION OF INTROGRESSION 37

Code Availability

Code for all our computational analyses is available on

https://github.com/thorekop/ABBA-Site-Clustering
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L. Rüber, D. Rubolini, D. Salvi, O. Seehausen, M. Seidel, S. Secomandi, B. Studer,

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syae028/7697831 by guest on 03 July 2024



Ac
ce
pt
ed
M
an
us
cr
ipt

42 REFERENCES

S. Theodoridis, M. Thines, L. Urban, A. Vasemägi, A. Vella, N. Vella, S. C. Vernes,
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Table 1. Numbers of variable sites in simulated genomic datasets and alignments. Alignments with lengths of 200,
500, and 1,000 bp were extracted from the genomic datasets and used for tree-based inference methods. Ne:
effective population size; µ: mutation rate; tP1,P2:divergence time. The specified minimum and maximum values
represent mean values obtained for a specific combination of all simulation parameters, across all simulation
replicates for this parameter combination (see Supplementary Table S1 for a comprehensive overview of the
numbers of variable, biallelic, and multiallelic sites per simulated dataset, as well as the numbers of variable and
parsimony-informative sites per alignment lengths of 200, 500, and 1,000 bp).

Variable Multi-allelic Variable sites
sites sites in alignments

Ne µ tP1,P2 (×106) (×103) 200 bp 500 bp 1,000 bp
104 1 × 10−9 1 × 107 1.46 – 2.27 35 – 85 14.6 – 22.7 36.5 – 56.8 73.2 – 113.5
104 1 × 10−9 2 × 107 2.06 – 3.47 69 – 205 20.6 – 34.7 51.4 – 86.8 102.9 – 173.5
104 1 × 10−9 3 × 107 2.63 – 4.59 115 – 368 26.3 – 45.9 65.7 – 114.6 131.4 – 229.5
104 2 × 10−9 1 × 107 2.82 – 4.28 133 – 318 28.1 – 42.8 70.4 – 107.1 140.5 – 214.0
104 2 × 10−9 2 × 107 3.90 – 6.33 261 – 737 39.0 – 63.3 97.4 – 158.4 194.9 – 316.8
104 2 × 10−9 3 × 107 4.92 – 8.12 428 – 1,281 49.2 – 81.2 123.0 – 203.1 246.0 – 405.9
105 1 × 10−9 1 × 107 1.54 – 2.33 39–90 15.4 – 23.3 38.5 – 58.3 77.0 – 116.6
105 1 × 10−9 2 × 107 2.12 – 3.53 74–211 21.2 – 35.3 53.2 – 88.2 106.1 – 176.4
105 1 × 10−9 3 × 107 2.70 – 4.64 121 – 377 27.0 – 46.4 67.4 – 116.1 134.8 – 232.1
105 2 × 10−9 1 × 107 2.96 – 4.39 147 – 335 29.6 – 43.9 73.9 – 109.7 147.8 – 219.5
105 2 × 10−9 2 × 107 4.02 – 6.43 279 – 762 40.2 – 64.3 100.4 – 160.7 201.0 – 321.4
105 2 × 10−9 3 × 107 5.03 – 8.20 448 – 1,311 50.3 – 82.0 125.6 – 205.1 251.5 – 410.2
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