
Evolution of male pregnancy associated with
remodeling of canonical vertebrate immunity in
seahorses and pipefishes
Olivia Rotha,1

, Monica Hongrø Solbakkenb
, Ole Kristian Tørresenb

, Till Bayera, Michael Matschinerb,c,
Helle Tessand Baalsrudb, Siv Nam Khang Hoffb, Marine Servane Ono Brieucb, David Haasea, Reinhold Haneld,
Thorsten B. H. Reuscha,2

, and Sissel Jentoftb,2

aMarine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105 Kiel, Germany; bCentre for Ecological and Evolutionary
Synthesis, Department of Biosciences, University of Oslo, NO-0371 Oslo, Norway; cDepartment of Palaeontology and Museum, University of Zurich, CH-8006
Zürich, Switzerland; and dThünen Institute of Fisheries Ecology, D-27572 Bremerhaven, Germany

Edited by Günter P. Wagner, Yale University, New Haven, CT, and approved March 13, 2020 (received for review September 18, 2019)

A fundamental problem for the evolution of pregnancy, the most
specialized form of parental investment among vertebrates, is the
rejection of the nonself-embryo. Mammals achieve immunological
tolerance by down-regulating both major histocompatibility com-
plex pathways (MHC I and II). Although pregnancy has evolved
multiple times independently among vertebrates, knowledge of
associated immune system adjustments is restricted to mammals.
All of them (except monotremata) display full internal pregnancy,
making evolutionary reconstructions within the class mammalia
meaningless. Here, we study the seahorse and pipefish family (syn-
gnathids) that have evolved male pregnancy across a gradient from
external oviparity to internal gestation. We assess how immunolog-
ical tolerance is achieved by reconstruction of the immune gene
repertoire in a comprehensive sample of 12 seahorse and pipefish
genomes along the “male pregnancy” gradient together with ex-
pression patterns of key immune and pregnancy genes in reproduc-
tive tissues. We found that the evolution of pregnancy coincided
with a modification of the adaptive immune system. Divergent ge-
nomic rearrangements of the MHC II pathway among fully preg-
nant species were identified in both genera of the syngnathids: The
pipefishes (Syngnathus) displayed loss of several genes of the MHC
II pathway while seahorses (Hippocampus) featured a highly diver-
gent invariant chain (CD74). Our findings suggest that a trade-off
between immunological tolerance and embryo rejection accompa-
nied the evolution of unique male pregnancy. That pipefishes survive
in an ocean of microbes without one arm of the adaptive immune
defense suggests a high degree of immunological flexibility among
vertebrates, which may advance our understanding of immune-
deficiency diseases.
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Pregnancy is the most dramatic form of parental investment,
protecting embryos from extreme temperatures, anoxia, osmotic

stress, and predation at the cost of fewer young, less effective
dispersal, and high-energy demand (1, 2). Although this trait re-
quires multiple anatomical and physiological changes (3) involving
development, morphology, osmoregulation, endocrinology, and
immunology (4, 5), it has evolved independently in more than 150
vertebrate lineages. A fundamental problem for pregnancy to
evolve is the rejection of the embryo that is recognized as foreign
tissue by the vertebrate’s adaptive immune system, as it displays
alleles also from the other parent. Modulation of the immune
system to tolerate foreign protein signatures of the embryonic
tissue, in turn, is conflicting with the maintenance of immuno-
logical vigilance toward pathogens (6).
Being mammals themselves, researchers have almost exclu-

sively focused on mammalian pregnancy to assess the key ad-
aptations for pregnancy evolution. In vertebrates, the unique
diversity of the classic major histocompatibility complex (MHC)

class I and II genes (7–9) plays a key role for self/nonself-recognition.
While in mammals an initial inflammation seems crucial for embryo
implantation (10), during pregnancy mammals prevent an immuno-
logical rejection of the embryo with tissue layers of specialized fetal
cells, the trophoblasts (11–13). Trophoblasts do not express MHC II
(14–16) and thus prevent antigen presentation to maternal T-helper
(Th) cells (17), which otherwise would trigger an immune response
against nonself. Additionally, expression of classic MHC I genes
(HLA-A, -B, and -D) is down-regulated (18). These immunological
adaptations are mediated by a cross-talk between the placental
trophoblasts and uterine immune cells, in particular natural killer
cells and regulatory T cells (Tregs) (19, 20). Tregs maintain
self-tolerance by suppressing inflammatory Th1 immune responses
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(21), as implied by the fact that Treg deficiencies evoke
miscarriage (6).
In order to gain insight into the successive evolution of preg-

nancy and the corresponding molecular cooption of genes and
pathways, comparative studies along well-resolved phylogenetic
clades are essential. The lack of transitional stages renders
mammals unsuitable to reconstruct critical steps for the evolu-
tion of pregnancy. Fishes show the greatest diversity in preg-
nancy evolution, which makes them pivotal for the assessment
of the evolution of vertebrate pregnancy (5). Pregnancy has
evolved in six teleost orders (Lophiiformes, Beloniformes, Cyp-
rinodontiforames, Scopaeniformes, Perciformes, and Syngna-
thiformes) (22). Among those, we selected the Syngnathiformes
as an ideal taxonomic group to reconstruct possible genomic
modifications underlying pregnancy evolution. Species in this
family display a gradient of male pregnancy, ranging from ex-
ternal attachment of the eggs to the belly (in the subfamily
Nerophinae) to additional external protection via skin flaps (in
Doryrhamphus, Oosthethus, and Solegnathiinae), with evolution
of internal gestation via brood pouches in Syngnathus (inverted
brood pouch) and Hippocampus (sealed brood pouch) as the
most advanced states of full internal pregnancy (23, 24) (Fig. 1).
In the latter two genera, the fertilized eggs (and later the hatched
embryos) become engulfed and effectively integrated by parental
tissue, and are supplied with nutrients, oxygen, and parental
immunity via a placenta-like organ (1, 25, 26). This gradient in
parental investment provides a unique opportunity to analyze the
concomitant changes in the vertebrate immune system, and to
test whether adaptations similar to mammalian pregnancy assure
immunological tolerance. We hypothesized that immunological
tolerance toward embryonic tissue is correlated to a genomic
modification of the adaptive immune system. We focused par-
ticularly on the MHC I and MHC II pathways due to their key
roles in immunological tolerance, a hypothesis that was also
based on preliminary transcriptomic data in one genus (27).

Here we present comprehensive genome data on 12 repre-
sentative species of the Syngnathiformes covering a broad range
of parental reproductive investment. By assessing their immune
gene repertoire, we reconstructed the evolutionary acquisition of
immunological tolerance within this unique lineage. As a non-
mutually exclusive explanation, we also assessed whether im-
mune gene regulation contributes to immunological tolerance in
syngnathids, similar to mammals, and measured differential gene
expression during male pregnancy in Syngnathus typhle using
comparative transcriptomics to assess whether immunological
tolerance can also be achieved by gene regulation in syngnathids,
similar to mammals.

Genome Size Evolution in Syngnathiformes
We selected one species, S. typhle, to obtain a high coverage and
contiguous genome assembled to a high-quality draft stage suf-
ficient to achieve gene repertoire completeness using a combi-
nation of paired-end and mate-pair libraries. The genomes of 11
additional species were assembled to draft stage (SI Appendix,
Table S2). Based on the whole-genome datasets, including the
already published genomes of Syngnathus scovelli and Hippo-
campus comes (29, 30), Bayesian phylogenetic analyses (SI Ap-
pendix, Table S3) places the origin of the Syngnathiformes clade
at 80 Mya (SI Appendix, Fig. S1). Surprisingly, the Syngnathi-
formes lineage contains species with very divergent genome
sizes, spanning from 347 Mbp (Syngnathus rostellatus) to 1.8 Gbp
(Entelurus aequoreus) (Table 1). Syngnathiformes species lacking
male pregnancy—namely Fistularia tabacaria, Mullus surmuletus,
Dactylopterus volitans, Aeoliscus strigatus, and Macroramphorus
scolopax—displayed larger genomes than both genera with full
male pregnancy (i.e., all Hippocampus and Syngnathus species).
In contrast, the Nerophinae pipefishes with external male preg-
nancy, specifically Nerophis ophidion and E. aequoreus, have
significantly larger genomes (Table 1). Concordantly, during 50
million y of evolution, transposable elements have expanded in

A B C Nerophinae
Tail brooder

Placenta-like structure

Tail brooderTrunk brooder
supmacoppiH suhtangnyS 
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Fig. 1. Morphology of brood pouches of subfamily Nerophinae (A), and of the genera Syngnathus (B), and Hippocampus (C) and display of the placenta-like
structures in syngnathids (only Syngnathus and Hippocampus). The placenta-like structure with lumen, apical pore, CRM (cells rich in mitochondria), ions,
epithelial cells, capillaries, and the egg are drawn after figure 1 of ref. 28.
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Nerophinae, most likely explaining the large genome sizes within
this subfamily (SI Appendix, Fig. S2 and Table S4).

Modification of MHC II Pathways in Syngnathus and
Hippocampus
In order to correlate the modification of adaptive immunity with
the degree of male pregnancy, a set of key genes involved in
adaptive immunity was analyzed from the assembled genomes
presented here along with two previously published syngnathid
genomes (29, 30) (SI Appendix, Table S2). MHC I and MHC II
are essential for the recognition process of nonself-peptides by
presenting them to CD8+ and CD4+ T cells, respectively. In line
with our hypothesis, all fully pregnant species (i.e., genera Syn-
gnathus and Hippocampus) underwent considerable modifica-
tions of their adaptive immune system characterized by losses or
changes of key genes of the MHC II pathway (Fig. 2; details on
ortholog search and analyses can be found in the SI Appendix,
sections 5.1. and 5.5.11).
The invariant chain of MHC II (CD74), preventing premature

peptide binding of MHC II, displayed a divergent exon 3 in
Syngnathus and Hippocampus compared to both mammals and
other teleosts (Fig. 3). Additionally, Hippocampus had a sequence
substitution of exon 6b, while Syngnathus displayed a divergent
exon compared to other fish and human. Both exons 3 and 6b are
located in the protein region protruding into the endosomal lumen.
Several lines of evidence suggest that these losses are impairing
functions of CD74. In human, exon 3 of CD74 covers the region
associating with MHC II (CLIP) [amino acids 108 to 124 in SI
Appendix, Dataset 1: 10CD74_clean (31)]. Exon 6b is annotated
as Thyroglobulin type I repeats, which are proposed cysteine
protease inhibitors (this exon consists of six conserved cysteine
residues) and are implicated in delaying the degradation of in-
ternalized antigens subsequently preserving epitopes for antigen
presentation (32, 33).
As the most drastic change in gene repertoire, all Syngnathus

species have lost the genes encoding the classic MHC II α- and
β-chains, implying that the presentation of antigens to the T cell
receptor on CD4+ T lymphocytes is disabled (Fig. 2). This is
supported by a loss of CD4, mediating successful receptor binding
and activation of CD4+ T lymphocytes—AICDA, responsible for
the unique receptor diversity of the antibodies and CIITA, the
MHC II transactivator—which control the expression of MHC II
genes in antigen-presenting cells. The only canonical gene of the

MHC II pathway remaining in the Syngnathus genomes was the au-
toimmune regulator (35), driving negative selection on self-recognizing
T cells (36). While leading and trailing exons of AIRE were well
conserved among all investigated Syngnathiformes species com-
pared to reference sequences from other fish families, several
other exons diverged markedly or homologous sequences were not
found [Fig. 3 and SI Appendix, Dataset 1: 13AIRE_exon_overview
(31)]. In the genera Syngnathus and Hippocampus, exons 3, 4, 5, 6,
and 12 of AIRE were lost or substituted with very divergent se-
quences that could not be aligned. Putative loss of MHC II-related
function of the AIRE transcription factor is further emphasized by
the lack of expression in various S. typhle tissues, which could result
in insufficient negative selection of T cells in the thymus (36).
Overall, our findings suggest that the MHC class II pathway was
lost in Syngnathus.
The situation in Hippocampus was more complex. Similar

modifications as in Syngnathus for the CD74 gene were observed
in terms of a divergent exon 3, and in a substitution of exon 6b,
Importantly, no loss of the MHC II genes as in all three Syn-
gnathus species was observed. However, in Hippocampus, the
MHC II gene sequences, in particular of the β-copy, were highly
distinct from other functional MHC II genes found in species
with functional MHC class II such as zebrafish, seabass, salmon,
and guppy [SI Appendix, Dataset 1: 29_MHCII_beta_complete
(31)]. In parallel, small sections of some CIITA exons displayed
substitutions compared to both other teleosts and mammals.
This is in line with findings for AIRE in both Hippocampus and
Syngnathus, where several exons were either lost or diverged
markedly compared to other teleosts, indicating most likely an
alternative function not related to MHC II (Fig. 3). Moreover, the
tertiary structure ofMHC IIβ genes of Hippocampus was predicted
to lack two critical cysteine bridges that are essential to form the
peptide-binding pocket of the MHC II molecule [SI Appendix,
Dataset 1: 29MHCII_beta_complete (31)]. In line with these find-
ings, inHippocampus we identified positive selection in sequences of
genes that were lost in Syngnathus (AIRE, CD4, and CIITA), which
may suggest neo- or subfunctionalization (SI Appendix, Table S11).
A closer examination of the invariant chain encoding gene

CD74 also suggests that the evolution of adaptive immunity has
taken distinct routes in the two sister genera Syngnathus and
Hippocampus. A shared relaxed selection on CD74 in the com-
mon ancestor of syngnathids resulted in a loss-of-function by
either sequence substitution in the Hippocampus or divergence

Table 1. Summary of species, estimated genome sizes, and assembly statistics

Species Name
Estimated genome size

(Mbp)
Assembly size

(Mbp)
N50 scaffold

(Mbp)
N50

contig
BUSCO complete

(%)

Aeoliscus strigatus Jointed razorfish 403 381 115.8 15.9 89.6
Dactylopterus volitans Flying Gurnard 499 577 17.1 8.3 74.1
Doryramphus

dactylophorus
Banded pipefish 651 619 75.2 27.6 87.1

Entelurus aequoreus Snake pipefish 1834 557 3.9 3.4 21.6
Fistularia tabacaria Bluespotted

cornetfish
762 593 107.2 17.7 90.8

Hippocampus comes* Tiger tail seahorse NA 494 2034.5 39.6 89.4
Hippocampus kuda Yellow seahorse 478 445 31.2 10.4 83.9
Hippocampus whitei White´s seahorse 461 433 40.8 10.3 86.0
Macroramphorus scolopax Longspine snipefish 507 418 41.8 13.4 86.1
Mullus surmuletus Surmulet 569 469 17.2 7.2 73.8
Nerophis ophidion Straightnose pipefish 1581 976 6.8 5.2 33.6
Syngnathus rostellatus Nilsson´s pipefish 347 283 87.6 14.9 89.0
Syngnathus scovelli* Gulf pipefish NA 307 12400.1 27.8 85.8
Syngnathus typhle Broadnosed pipefish NA 315 3047.0 25.8 88.8

NA, not applicable.
*Already published genomes.
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in the Syngnathus for exon 6b, accompanied with a divergent
exon 3 in both lineages. While subsequently several core genes of
the MHC II pathway were lost in Syngnathus, genes of the MHC
II pathway were under positive selection in Hippocampus [Fig. 3
and SI Appendix, Table S11 and Dataset 1, gene alignments (31)]
and showed clear sequence divergence compared to other tele-
osts and humans (Fig. 3). Different scenarios may explain the
observed pattern in the MHC II pathway of Hippocampus.
First, the sequence divergence of the MHC II core genes in

contrast to other teleosts and the signs of positive selection could
indicate that in Hippocampus the MHC II genes were taking over
alternative or novel functions. CD74 is pivotal for a functional
MHC II pathway, as supported by an impaired assembly and
surface expression ofMHC II and a defective antigen presentation
in invariant chain knockout mice (37). While generally the CLIP of
CD74 (exon 3) associates with MHC II, the remaining exons of
CD74 act as chaperone, transporting MHC II to the loading
compartment. The loss of exon 6b inHippocampus could indicate a
compromised loading process. Accordingly, the MHC II system in
Hippocampus is likely to be less efficient in contrast to other
vertebrates, which may suffice to permit the evolution of full
male pregnancy.
Second, the MHC II pathway may not be compromised in its

function despite the lost and diverged exons of CD74 over a
functional rearrangement of the immune system. However, this
is less likely, as mice with transgenic expression of a truncated
CD74 protein lacking the CLIP region (the part of the gene that
diverges from other teleosts in Hippocampus) could not pursue
MHC II trafficking (38) (Fig. 3 and SI Appendix, Table S11).

Modifications of the MHC I Pathway under Pregnancy
In Gadiformes (cod-like fishes) an independent loss of the MHC
class II pathway was recently reported, and the observed di-
versification of MHC I genes was hypothesized to compensate
for the loss of a functional MHC II pathway (39, 40). Accord-
ingly, we assessed MHC I copy number in syngnathids using the
most conserved exon 4 of the MHC I gene and found it to be
higher in all species displaying male pregnancy (the Nerophinae
with external male pregnancy [27 to 42 copies], Hippocampus [20
to 36 copies], and Syngnathus [24 to 44 copies] with full male
pregnancy) compared to species without pregnancy (5 to 10
copies) (Fig. 2). While all identified MHC I sequences in Syn-
gnathiformes are part of the U lineage (41), the distinct cluster
of syngnathid MHC I sequences supports a potential coevolution
of MHC I with male pregnancy (SI Appendix, Figs. S9 and S10).
These lineage-specific MHC I variants likely increase the ligand
repertoire and suggest a possible function within the cross-
presentation pathway, in contrast to Atlantic cod, where cross-
presentation could be hindered due to loss of the entire CD74, a
gene with crucial function in the MHC I cross-presentation
pathway (42). Moreover, key genes of the MHC I pathway,
such as β2-Microglobulin (B2M, important for the availability of
MHC I light-chain proteins) and CD8 (responsible for activation
of CD8+ T lymphocytes), were under positive selection in syn-
gnathids, similar to RAG1 that facilitates V(D)J recombination
and TAP1/TAP2 that function as heterodimers in the transport of
antigens (SI Appendix, Table S11). This supports a shift from
the MHC II to MHC I cross-presentation pathway as all of
the latter genes (CD8, RAG1, and TAP1/TAP2) also have im-
portant functions in the MHC I cross-presentation pathway. The
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identification of marked positive-selection signals support an
interpretation of the MHC I pathway to coevolve with male
pregnancy. The expanded MHC I repertoire is likely to be linked
to the simultaneous loss/rearrangement of the MHC II pathway

and may compensate its function/deficiency over the MHC I
cross-presentation pathway.
Pregnancy requires special physiological adaptations to assure

the oxygen supply to the growing embryo. In line with these ex-
pectations, the repertoire of hemoglobin genes encoding oxygen
transport show signs of coevolution with male pregnancy. All
syngnathids have lost the hemoglobin gene alpha 6, while those
genera with full male pregnancy, Syngnathus and Hippocampus,
have also lost the alpha 5 gene. Conversely, fully pregnant species
have gained alpha 1 and alpha 2 hemoglobin genes (SI Appendix,
Figs. S14–S16). It is tempting to speculate that the shift in hemo-
globin gene repertoire indicates selection for more effective oxygen
transfer from father to offspring in male pregnancy evolution.

Modulation of Gene Expression during Pregnancy
Next, we assessed whether or not the evolution of immunological
tolerance required the cooption of similar genes and physiolog-
ical processes in female and male pregnancy. To do so, we an-
alyzed global gene-expression patterns using RNA sequencing in
our model species S. typhle in brood pouch tissues during pouch
development and pregnancy. At the same time, this approach
assessed whether the evolution of immunological tolerance in
male pregnancy was also achieved by immune gene regulation as
in mammals, in addition to the identified changes in gene rep-
ertoire. We examined the gene-expression profiles of male
undeveloped brood pouch tissues (control) against developed
pouch tissue from mature and receptive males (43); pouch tissue
at early- and at late-pregnancy genes with a false-discovery rate-
corrected P value of <0.05, as determined by the cuffdiff algorithm,
were categorized as differentially expressed (44). All differentially
expressed genes were searched for potential functions via homol-
ogy, using reported functions in female pregnancy of mammals, in
the squamate reptile Chalcides ocellatus (45) and in male preg-
nancy of S. scovelli (29) andHippocampus abdominalis (46). A total
of 141 genes were significantly up- or down-regulated during
male pregnancy in S. typhle and S. scovelli (29). The direction of
expression in differentially expressed genes correlated between
S. typhle and S. scovelli (R2 = 0.767), implying that up- or down-
regulation during pregnancy was mostly consistent in both
pipefish species. In particular, this was the case for the four genes
with the strongest up-regulation during pregnancy (MYOC,
HCEA, LS-12, APOA1) and for the two genes that showed the
most massive down-regulation during pregnancy (STX2 and
MSXC). Several genes known to be differentially expressed in the
pregnancy of the seahorse H. abdominalis also showed expression
changes in the pregnancy of the pipefish S. typhle (SI Appendix,
Table S12). We identified 116 genes covering important pathways
in human female pregnancy as differentially expressed during
male pregnancy in S. typhle. These were involved in the prostaglandin,
mammalian target of rapamycin (mTOR), and progesterone
pathways, in corpus luteum degradation, parent–embryo transport,
placenta development, conceptus implantation, and embryo
growth (Fig. 4 and SI Appendix, section 7.3 and Tables S12
and S13).
In summary, these findings suggest that the independent

evolutionary trajectories of female and male pregnancy in two
vertebrate classes have resulted in expression changes in highly
overlapping sets of genes coding for pathways with similar
functions (SI Appendix, Tables S12 and S13). Apparently, the
convergent evolution of male and female pregnancy has coopted
a similar set of genes and involves similar physiological pathways.
Functional tests using visualization of gene expression over
in situ hybridization and gene knockdowns will permit further
investigation of the molecular basis of male pregnancy evolution
and its mechanistic similarity to female pregnancy in the future.
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Fig. 3. Domain-level alignment of three genes (CD74, AIRE, CIITA) critical
for the MHC class II pathway with lost or divergent exons in Hippocampus
and Syngnathus compared to other vertebrate sequences. For each exon,
sequence divergence to other teleosts (yellow), human (34), or sequence
conservation other teleosts (green), human (blue) are shown. Exon loss is
indicated in white and sequence conservation between Hippocampus and
Syngnathus but divergence to other teleosts/humans in gray. Orange tri-
angles indicate the number of sites under positive selection. An ansterisk (*)
indicates yellow exon 6b and 7 of CD74 also diverge between Syngnathus
and Hippocampus.
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Immune Gene Expression and Male Pregnancy
Next, we focused on immune gene-expression changes that ac-
company the modification of the MHC II pathway and the MHC
I gene repertoire expansion. We analyzed the differential ex-
pression of immune genes that are either known to have a
function in female pregnancy in mammals or known to also show
expression changes in pregnancy of reptile, of seahorse, or of
another pipefish species [in bold italics below; in the parenthesiss
M indicates a gene known to have a function in mammals, R in
the reptile C. ocellatus (45), S in the seahorse H. abdominalis
(46), and P in the pipefish S. scovelli (29)] (SI Appendix, Table
S12) or those with a fold-change > 2 (220 genes in total, in-
cluding 30 immune genes) (only in italics) (Fig. 5 and SI Ap-
pendix, Table S13).
Collectively, the observed gene-expression changes during

male pregnancy contribute to immunological tolerance during
pregnancy already apparent from the gene repertoire. In par-
ticular, we identified expression changes of proinflammatory Th1
and antiinflammatory Th2 responses and a simultaneous down-
regulation of the MHC I pathway during pregnancy, which re-
semble the expression changes during mammalian pregnancy.
An inflammation response was suggested to be important for
successful implantation in mammalian pregnancy (10). The key
genes mediating this specific inflammation at implantation in
mammals—IL6R (M/P), TNF (M), and PTGS2 (M) (10, 47)—
were up-regulated during pouch development in pipefish. Here,
other inflammation responses dropped [down-regulation of
proinflammatory interleukins IL1B (M) and IL2RG (M), and
S100A13 (interleukin secretion gene); the proinflammatory cy-
tokine MIF; FHL2 involved in inflammation response; ADSSL1C
involved in antimicrobial peptide synthesis; the antimicrobial
peptide PLE3; JUND involved in LPS response; and up-regulation
of GSN (M/R) that binds to LPS].
Simultaneously, lymphocyte maturation and proliferation were

suppressed through the down-regulation of CHIA and MEF2C
(M/S) (maturation of B cells and important in mammalian em-
bryo development), the up-regulation of GIMAP4 that enhances
lymphocyte apoptosis, and the up-regulation of the transcriptional

repressor PRDM1 (M/P) that initiates in mammals a lineage-restricted
progenitor cell population contributing to placental growth and
morphogenesis (48). Consistent with a shift from Th1 to Th2
immune responses during mammalian pregnancy, CEBPB (M/S/
P), which represses Th1 but facilitates Th2 immune response,
was up-regulated during pipefish male pregnancy. This coincided
with expression dynamics of EPX (M) mediating eosinophil ac-
tivity and promoting mammalian placental development (49).
Lymphocyte maturation and proliferation remained consistently
repressed during pregnancy as indicated by down-regulations of
RPL18A (R) (activation of T cell proliferation [Th1]), of FCRL5
(enhancing B cell development), of the proinflammatory in-
terleukin IL2RG (R/S), and of the interleukin secretion genes
S100A13 and IL20R (R/S).
During late pregnancy only, GPR97 and MFNG (both re-

sponsible for B cell differentiation) were down-regulated along
with the genes NFATC4 and HAVCR1, which are involved in
T cell maturation. Few genes involved in Th1 immune response
were up-regulated during pregnancy [TNF (M), CLCF1 (M),
KLF4 (M/S), and TNFRSF21 (M)]. In female pregnancy, those
genes were shown to have additional functions: TNF (M) medi-
ates placental development and implantation (10, 50), CLCF1
(M) is responsible for the onset of labors at term [a process re-
sembling inflammation (51)], and KLF4 (M/S) is key for the
maintenance of gestation (52). The two inflammation genes,
PLA2G4A (P) and IL17REL, were up-regulated during pouch
development but not during pregnancy. In summary, inflam-
mation responses during male pregnancy could be overlapping
with previously identified expression patterns of homologous
genes responsible for the regulation of inflammation during egg
implantation and female pregnancy.
Analogous to human pregnancy where CASP3 (M/S) modifies

the MHC class I pathway (53, 54) to support immunological
tolerance (55), CASP3 (M/S) was up-regulated during pipefish
pregnancy. Throughout early mammalian pregnancy, TAP1 (M)
is increasingly expressed on placenta-specific trophoblasts and
plays an important role in preventing maternal immune attacks
toward the embryos (56). Such up-regulation of TAP1 (M) was

A B

Fig. 4. Cooption of genes known from female human pregnancy in syngnathid male pregnancy. (A) Human female pregnancy and the most important
immunological, developmental, and endocrinological pathways involved. (B) Genes involved in those pathways with an established role in human pregnancy
change their expression also during pipefish pregnancy.
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also identified in pipefish. Mammalian trophoblasts only express
nonclassic nondiverse MHC I genes that will not induce a
nonself-rejection reaction against the embryo (57, 58). In pipefish,
a series of MHC I pathway genes that are involved in antigen
recognition, presentation, and processing were down-regulated
during pregnancy, such as F10 (M), H2-K1 (M), IRF1 (M), IRF8
(M), MR1 (M), FUT9 (M), and the Ig chains (Ig κ chain V, Ig μ
chain C, IGLC1). In humans, the silencing of CD74 (M/R) during
pregnancy is key for maintaining the acceptance of the semi-
allogenic embryo (59). The up-regulation of CD74 (M/R) is puzzling
as almost all other genes of the MHC II pathway are absent in
S. typhle. As key exons of CD74 are diverged or substituted in
Syngnathus, the up-regulation of CD74 during pregnancy rather
suggests a change of function for CD74 in the evolution of male
pregnancy. This suggests that consistent with female pregnancy,
antigen recognition over the MHC I pathway could also be
down-regulated during pipefish male pregnancy.

Discussion
Although pregnancy is widespread among the vertebrates, very
little is known on the immunological modifications that are re-
quired to prevent embryo rejection other than within the class

mammalia. Here, we present a major modification of the im-
mune system associated with increasing investment into preg-
nancy in the fish family of pipefishes and seahoreses that not only
entailed gene-expression changes during pregnancy but also co-
incided with major alterations of the gene repertoire of both
MHC pathways. While the identified rearrangement and loss of
the core genes of the MHC II pathway is consistent with an
adaptive explanation to modulate the immune system so as to
prevent immunological rejection of the embryo, demonstrating
causality would require future functional validation. While in
Syngnathus the genomic knockout of the MHC II pathway must
have resulted in a loss-of-function, in Hippocampus the situation
remains inconclusive. Knockdowns in closely related teleost spe-
cies of the CD74 exon that was substituted in Hippocampus would
be needed to illuminate its impact on the MHC II pathway.
One of the most unexpected findings was that even within a

single fish family, the rearrangement of the MHC II pathway
differed between the genera Hippocampus and Syngnathus. At
the same time, this demonstrates both a strong selection for
reduction of immunological vigilance displayed by the MHC
class II pathway during pregnancy evolution and a remarkable
flexibility of the vertebrate immune system in general. Because
this unique fish family displays male pregnancy, any of the im-
munological adaptations are also not compounded by the sex per
se (60) [i.e., the fact that the female sex through provisioning of
eggs usually needs a more competent immune system under con-
ventional sex roles, referred to as Bateman’s principle (61)].
Within the evolution of vertebrate immune systems, the cru-

cial role of the MHC II pathway for the recognition of patho-
genic epitopes is commonly considered essential (8). The almost
complete loss of the MHC II pathway in Syngnathus emphasizes
that the vertebrate immune system has a much higher degree of
functional flexibility than previously assumed, in line with recent
findings in the Gadiformes lineage (34, 39). The complete loss of
classic MHC IIα and -β genes in all cod-like fishes (Gadiformes)
coincides with truncation of CD4 and loss of CD74 (39, 40).
While in that taxonomic group, the selection regime leading to
MHC class II pathway loss is still elusive, we provide evidence
among Syngnathiformes that modification and loss of adaptive
immune genes and pathways is associated with the evolution of
male pregnancy, which potentially selected for immunological
tolerance. As Syngnathids and Gadiformes are only distantly
related (SI Appendix, Fig. S1), losses and divergence of key
genes of the MHC II pathway in each of those groups repre-
sent independent evolutionary events, likely driven by different
selection factors.
The loss of gut-associated lymphatic tissues (GALT), the

spleen (62), and the immune genes (CD4,MHC II, AICDA, CIITA)
in Syngnathus represent critical pathways that are attacked by the
HIV (CD4+ T cells, GALT). As a natural “knockout” for the MHC
class II pathway, Syngnathus may thus become instrumental in the
future as a model for research on natural or disease-related immune
deficiencies.

Materials and Methods
We have sequenced and assembled 12 Syngnathiformes genomes (SI Ap-
pendix, Table S2) and annotated the genome of S. typhle. We generated a
time-calibrated phylogeny of Syngnathiformes (SI Appendix, section 3 and
Fig. S1). To search for shifts in the optima of genome size in the different
lineages, we applied the Ornstein–Uhlenbeck process using the Syngnathi-
formes phylogeny and the genome sizes of the species (SI Appendix, section
4.1 and Fig. S2). To investigate potential reasons for differences in genome
size, a library of repeated elements was created (SI Appendix, section 4.2 and
Table S4). For immune, pregnancy, and hemoglobin genes, translated query
sequences, either as whole sequences and for MHC and hemoglobin also
split into individual exons, were used as input in a TBLASTN search toward
the scaffold from the assembled draft genomes. For MHC I and MHC II
searches, unitigs were used due to large copy numbers (SI Appendix, section

Fig. 5. Heatmap displaying expression changes (log2 fold-change) of S. typhle
immune genes during pouch development (DEV), early pregnancy (EP), and
late pregnancy (LP). Homologs of genes marked with (M) possess known
function (bold) in mammals (M), designation (R) denotes differential expres-
sion in the squamate reptile C. ocellatus (R), in the seahorse H. abdominalis (S),
or in the pipefish species S. scovelli (P).
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5.1). Upon gene alignments, gene trees were generated with RAxML (v8.2.10.)

(SI Appendix, section 5.2) and local gene synteny was explored forMHC II, AID,

CD4, and CIITA (SI Appendix, section 5.4). We assessed site-specific, positive

selection and gene-wide selection across the whole tree and with the syn-

gnathids as the foreground branches (SI Appendix, section 6 and Table S11). To

assess which genes are differentially expressed during male pregnancy and

during the development of the brood pouch tissue, we sequenced the tran-

scriptome of S. typhle in different tissue types (undeveloped brood pouch,

developed pouch, pouch at early pregnancy, pouch at late pregnancy). Dif-

ferential gene expression was calculated pairwise against the undeveloped

pouch and all differentially expressed genes were searched for potential

functions via homology (SI Appendix, section 7).
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